tìm m để hàm số y= $\sqrt[]{2sin^2x+4sinxcosx-(3+2m)cos^2x+2}$ xác định với mọi x 01/10/2021 Bởi Josephine tìm m để hàm số y= $\sqrt[]{2sin^2x+4sinxcosx-(3+2m)cos^2x+2}$ xác định với mọi x
\[\begin{array}{l} y = \sqrt {2{{\sin }^2}x + 4\sin x\cos x – \left( {3 + 2m} \right){{\cos }^2}x + 2} \\ Ham\,\,so\,\,xd\,\,voi\,\,moi\,\,x\\ \Leftrightarrow f\left( x \right) = 2{\sin ^2}x + 4\sin x\cos x – \left( {3 + 2m} \right){\cos ^2}x + 2 \ge 0\,\,\forall x\,\\ Voi\,\,\cos x = 0\\ \Rightarrow f\left( x \right) = 2{\sin ^2}x + 2 > 0\,\,\\ \Rightarrow \cos x = 0\,\,khong\,\,la\,\,nghiem\,\,cua\,pt\,\,f\left( x \right) = 0.\\ Chia\,\,ca\,\,2\,\,ve\,\,cua\,\,\left( * \right)\,cho\,\,{\cos ^2}x\,\,ta\,\,duoc:\\ 2{\tan ^2}x + 4\tan x – 3 – 2m + \frac{2}{{{{\cos }^2}x}} \ge 0\,\,\forall x\\ \Leftrightarrow \,\,2{\tan ^2}x + 4\tan x – 3 – 2m + 2{\tan ^2}t + 2 \ge 0\,\,\forall t\\ \Leftrightarrow 4{\tan ^2}x + 4\tan x – 1 – 2m \ge 0\,\,\,\,\,\forall t\,\,\left( 1 \right)\\ Dat\,\,\tan \,x = t\\ \Rightarrow \left( 1 \right) \Leftrightarrow 4{t^2} + 4y – 2m – 1 \ge 0\,\,\forall t\\ \Leftrightarrow \Delta ‘ \le 0 \Leftrightarrow 4 + 4\left( {2m + 1} \right) \le 0\\ \Leftrightarrow 1 + 2m + 1 \le 0\\ \Leftrightarrow 2m \le – 2\\ \Leftrightarrow m \le – 1. \end{array}\] Bình luận
\[\begin{array}{l}
y = \sqrt {2{{\sin }^2}x + 4\sin x\cos x – \left( {3 + 2m} \right){{\cos }^2}x + 2} \\
Ham\,\,so\,\,xd\,\,voi\,\,moi\,\,x\\
\Leftrightarrow f\left( x \right) = 2{\sin ^2}x + 4\sin x\cos x – \left( {3 + 2m} \right){\cos ^2}x + 2 \ge 0\,\,\forall x\,\\
Voi\,\,\cos x = 0\\
\Rightarrow f\left( x \right) = 2{\sin ^2}x + 2 > 0\,\,\\
\Rightarrow \cos x = 0\,\,khong\,\,la\,\,nghiem\,\,cua\,pt\,\,f\left( x \right) = 0.\\
Chia\,\,ca\,\,2\,\,ve\,\,cua\,\,\left( * \right)\,cho\,\,{\cos ^2}x\,\,ta\,\,duoc:\\
2{\tan ^2}x + 4\tan x – 3 – 2m + \frac{2}{{{{\cos }^2}x}} \ge 0\,\,\forall x\\
\Leftrightarrow \,\,2{\tan ^2}x + 4\tan x – 3 – 2m + 2{\tan ^2}t + 2 \ge 0\,\,\forall t\\
\Leftrightarrow 4{\tan ^2}x + 4\tan x – 1 – 2m \ge 0\,\,\,\,\,\forall t\,\,\left( 1 \right)\\
Dat\,\,\tan \,x = t\\
\Rightarrow \left( 1 \right) \Leftrightarrow 4{t^2} + 4y – 2m – 1 \ge 0\,\,\forall t\\
\Leftrightarrow \Delta ‘ \le 0 \Leftrightarrow 4 + 4\left( {2m + 1} \right) \le 0\\
\Leftrightarrow 1 + 2m + 1 \le 0\\
\Leftrightarrow 2m \le – 2\\
\Leftrightarrow m \le – 1.
\end{array}\]