tìm m để pt có nghiệm căn (2x^2-2x+m)=x+1 13/07/2021 Bởi Kylie tìm m để pt có nghiệm căn (2x^2-2x+m)=x+1
Đáp án: Giải thích các bước giải: \(\begin{array}{l}\sqrt {2{x^2} – 2x + m} = x + 1\left( 1 \right)\\ \to \left\{ \begin{array}{l}x \ge – 1\\2{x^2} – 2x + m = {x^2} + 2x + 1\end{array} \right.\\ \to \left\{ \begin{array}{l}x \ge – 1\\{x^2} – 4x + m – 1 = 0\left( * \right)\end{array} \right.\\ \end{array}\) Để (1) có nghiệm ⇔ (*) có nghiệm ⇔Δ’≥0 \(\begin{array}{l} \to \left[ \begin{array}{l}\left\{ \begin{array}{l}4 – m + 1 \ge 0\\{x_1} = 2 + \sqrt {5 – m} \ge – 1\end{array} \right.\\\left\{ \begin{array}{l}4 – m + 1 \ge 0\\{x_2} = 2 – \sqrt {5 – m} \ge – 1\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}m \le 5\\\sqrt {5 – m} \ge – 3\left( {ld} \right)\end{array} \right.\\\left\{ \begin{array}{l}m \le 5\\\sqrt {5 – m} \le 3\end{array} \right. \to \left\{ \begin{array}{l}m \le 5\\5 – m \le 9\end{array} \right. \to – 4 \le m \le 5\end{array} \right.\\ \to \left[ \begin{array}{l}m \le 5\\ – 4 \le m \le 5\end{array} \right.\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
\sqrt {2{x^2} – 2x + m} = x + 1\left( 1 \right)\\
\to \left\{ \begin{array}{l}
x \ge – 1\\
2{x^2} – 2x + m = {x^2} + 2x + 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \ge – 1\\
{x^2} – 4x + m – 1 = 0\left( * \right)
\end{array} \right.\\
\end{array}\)
Để (1) có nghiệm
⇔ (*) có nghiệm
⇔Δ’≥0
\(\begin{array}{l}
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
4 – m + 1 \ge 0\\
{x_1} = 2 + \sqrt {5 – m} \ge – 1
\end{array} \right.\\
\left\{ \begin{array}{l}
4 – m + 1 \ge 0\\
{x_2} = 2 – \sqrt {5 – m} \ge – 1
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
m \le 5\\
\sqrt {5 – m} \ge – 3\left( {ld} \right)
\end{array} \right.\\
\left\{ \begin{array}{l}
m \le 5\\
\sqrt {5 – m} \le 3
\end{array} \right. \to \left\{ \begin{array}{l}
m \le 5\\
5 – m \le 9
\end{array} \right. \to – 4 \le m \le 5
\end{array} \right.\\
\to \left[ \begin{array}{l}
m \le 5\\
– 4 \le m \le 5
\end{array} \right.
\end{array}\)