Tìm m để pt sau có nghiệm X^2+2x-2×|x+1|+m-1 19/08/2021 Bởi Aubrey Tìm m để pt sau có nghiệm X^2+2x-2×|x+1|+m-1
Đáp án: $\begin{array}{l}{x^2} + 2x – 2.\left| {x + 1} \right| + m – 1 = 0\\ \Rightarrow {x^2} + 2x + 1 – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\ \Rightarrow {\left( {x + 1} \right)^2} – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\ \Rightarrow {\left( {\left| {x + 1} \right|} \right)^2} – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\\text{Đặt}:\left| {x + 1} \right| = t\left( {t \ge 0} \right)\\ \Rightarrow {t^2} – 2t + {m^2} – 2 = 0\\ \Rightarrow \left\{ \begin{array}{l}\Delta ‘ \ge 0\\\dfrac{{ – b}}{a} \ge 0\\\dfrac{c}{a} \ge 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}1 – {m^2} + 2 \ge 0\\2 \ge 0\\{m^2} – 2 \ge 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{m^2} \le 3\\{m^2} \ge 2\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\sqrt 2 \le m \le \sqrt 3 \\ – \sqrt 3 \le m \le – \sqrt 2 \end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
{x^2} + 2x – 2.\left| {x + 1} \right| + m – 1 = 0\\
\Rightarrow {x^2} + 2x + 1 – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\
\Rightarrow {\left( {x + 1} \right)^2} – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\
\Rightarrow {\left( {\left| {x + 1} \right|} \right)^2} – 2\left| {x + 1} \right| + {m^2} – 2 = 0\\
\text{Đặt}:\left| {x + 1} \right| = t\left( {t \ge 0} \right)\\
\Rightarrow {t^2} – 2t + {m^2} – 2 = 0\\
\Rightarrow \left\{ \begin{array}{l}
\Delta ‘ \ge 0\\
\dfrac{{ – b}}{a} \ge 0\\
\dfrac{c}{a} \ge 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
1 – {m^2} + 2 \ge 0\\
2 \ge 0\\
{m^2} – 2 \ge 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{m^2} \le 3\\
{m^2} \ge 2
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\sqrt 2 \le m \le \sqrt 3 \\
– \sqrt 3 \le m \le – \sqrt 2
\end{array} \right.
\end{array}$