Tìm Max a) P = 5 – 2x – x^2 Q= -3y^2 + 2y – 1

Tìm Max
a) P = 5 – 2x – x^2
Q= -3y^2 + 2y – 1

0 bình luận về “Tìm Max a) P = 5 – 2x – x^2 Q= -3y^2 + 2y – 1”

  1. $a,P=5-2x-x^2 \\=-(x^2+2x-5) \\=-(x^2+2x+1-6) \\=-(x+1)^2+6 \\Vì\ -(x+1)^2≤0∀x \\⇒P=-(x+1)^2+6≤6∀x$

    Dấu = xảy ra khi và chỉ khi 

    $-(x+1)^2=0 \\⇔-(x+1)=0 \\⇔x+1=0 \\⇔x=-1 \\Vậy\ Max\ P=6⇔x=-1 \\b,Q=-3y^2+2y-1 \\=-(3y^2-2y+1) \\=-\bigg[(\sqrt{3}y)^2-2.\sqrt{3}y.\dfrac{1}{\sqrt{3}}+\bigg(\dfrac{1}{\sqrt{3}}\bigg)^2+\dfrac{2}{3}\bigg] \\=-\bigg[\bigg(\sqrt{3}y-\dfrac{1}{\sqrt{3}}\bigg)^2+\dfrac{2}{3}\bigg] \\=-\bigg(\sqrt{3}y-\dfrac{1}{\sqrt{3}}\bigg)^2-\dfrac{2}{3} \\Vì\ -\bigg(\sqrt{3}y-\dfrac{1}{\sqrt{3}}\bigg)^2-≤0∀x \\⇒Q=-\bigg(\sqrt{3}y-\dfrac{1}{\sqrt{3}}\bigg)^2-\dfrac{2}{3}≤-\dfrac{2}{3}∀x$

    Dấu = xảy ra khi và chỉ khi 

    $-\bigg(\sqrt{3}y-\dfrac{1}{\sqrt{3}}\bigg)^2=0 \\⇔\sqrt{3}y-\dfrac{1}{\sqrt{3}}=0 \\⇔\sqrt{3}y=\dfrac{1}{\sqrt{3}} \\⇔y=\dfrac{1}{3}$

    Vậy $Max\ Q=\dfrac{-2}{3}⇔y=\dfrac{1}{3}$

    Bình luận
  2. `a)`

    `P = 5 – 2x – x^2`

    ` = – (x^2 + 2x – 5)`

    ` = – (x^2 + 2x + 1)  + 6`

    ` = -( x^2 + 2 . x . 1 + 1^2) + 6`

    ` = – (x+1)^2 + 6`

    `\forall x ` ta có :

    `(x+1)^2 \ge 0`

    `=> -(x+1)^2 \le 0`

    `=> -(x+1)^2 + 6 \le 6`

    `=> P \le 6`

    Dấu `=` xảy ra `<=> x + 1 = 0`

    `<=> x = -1`

    Vậy `Max_P = 6 <=> x = -1`

    `b)`

    `Q = -3y^2 + 2y  -1`

    `= -3 . (y^2 – 2/3y )  -1`

    ` = -3 . (y^2 – 2/3y + 1/9)  – 2/3`

    ` = -3 . [y^2 – 2 . y . 1/3 + (1/3)^2 ]  -2/3`

    ` = -3 . (y-1/3)^2 – 2/3`

    `\forall x` ta có :

    `(y-1/3)^2 \ge 0`

    `=> -3 . (y-1/3)^2 \le 0`

    `=> -3 . (y-1/3)^2 – 2/3 \le -2/3`

    `=> Q \le -2/3`

    Dấu `=` xảy ra `<=> y – 1/3 =0`

    `<=> y=1/3`

    Vậy `Max_Q = -2/3 <=> y = 1/3`

    Bình luận

Viết một bình luận