tìm MIN A=2/(6x-5-9x^2) tìm MIN B=(3X^2-8X+6)/(x^2-2x+1) tìm MIN c=x(X-3)(x-4)(x-7) 26/07/2021 Bởi Melanie tìm MIN A=2/(6x-5-9x^2) tìm MIN B=(3X^2-8X+6)/(x^2-2x+1) tìm MIN c=x(X-3)(x-4)(x-7)
Đáp án: $\begin{array}{l}a)A = \frac{2}{{6x – 5 – 9{x^2}}}\\Do:6x – 5 – 9{x^2}\\ = – 9{x^2} + 6x – 1 – 4\\ = – \left( {9{x^2} – 6x + 1} \right) – 4\\ = – {\left( {3x – 1} \right)^2} – 4\\Do: – {\left( {3x – 1} \right)^2} \le 0\forall x\\ \Rightarrow – {\left( {3x – 1} \right)^2} – 4 \le – 4\forall x\\ \Rightarrow \frac{2}{{6x – 5 – 9{x^2}}} \ge \frac{2}{{ – 4}} = – \frac{1}{2}\\ \Rightarrow A \ge – \frac{1}{2}\forall x\\ \Rightarrow \min A = – \frac{1}{2} \Leftrightarrow z = \frac{1}{3}\\b)B = \frac{{3{x^2} – 8x + 6}}{{{x^2} – 2x + 1}}\\ = \frac{{3{x^2} – 6x + 3 – 2x + 2 + 1}}{{{{\left( {x – 1} \right)}^2}}}\\ = \frac{{3\left( {{x^2} – 2x + 1} \right)}}{{{x^2} – 2x + 1}} – \frac{{2\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^2}}} + \frac{1}{{{{\left( {x – 1} \right)}^2}}}\\ = 3 – \frac{2}{{x – 1}} + \frac{1}{{{{\left( {x – 1} \right)}^2}}}\\ = \frac{1}{{{{\left( {x – 1} \right)}^2}}} – 2.\frac{1}{{x – 1}} + 1 + 2\\ = {\left( {\frac{1}{{x – 1}} – 1} \right)^2} + 2 \ge 2\forall x \ne 1\\ \Rightarrow Min\,B = 2 \Leftrightarrow \frac{1}{{x – 1}} = 1 \Rightarrow x – 1 = 1 \Rightarrow x = 2\left( {tm} \right)\\c)\\C = x\left( {x – 3} \right)\left( {x – 4} \right)\left( {x – 7} \right)\\ = x\left( {x – 7} \right)\left( {x – 3} \right)\left( {x – 4} \right)\\ = \left( {{x^2} – 7x} \right)\left( {{x^2} – 7x + 12} \right)\\ = {\left( {{x^2} – 7x} \right)^2} + 12\left( {{x^2} – 7x} \right) + 36 – 36\\ = {\left( {{x^2} – 7x + 6} \right)^2} – 36 \ge – 36\forall x\\ \Rightarrow \min C = – 36\, \Leftrightarrow {x^2} – 7x + 6 = 0\\ \Rightarrow x = 1/x = 6\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)A = \frac{2}{{6x – 5 – 9{x^2}}}\\
Do:6x – 5 – 9{x^2}\\
= – 9{x^2} + 6x – 1 – 4\\
= – \left( {9{x^2} – 6x + 1} \right) – 4\\
= – {\left( {3x – 1} \right)^2} – 4\\
Do: – {\left( {3x – 1} \right)^2} \le 0\forall x\\
\Rightarrow – {\left( {3x – 1} \right)^2} – 4 \le – 4\forall x\\
\Rightarrow \frac{2}{{6x – 5 – 9{x^2}}} \ge \frac{2}{{ – 4}} = – \frac{1}{2}\\
\Rightarrow A \ge – \frac{1}{2}\forall x\\
\Rightarrow \min A = – \frac{1}{2} \Leftrightarrow z = \frac{1}{3}\\
b)B = \frac{{3{x^2} – 8x + 6}}{{{x^2} – 2x + 1}}\\
= \frac{{3{x^2} – 6x + 3 – 2x + 2 + 1}}{{{{\left( {x – 1} \right)}^2}}}\\
= \frac{{3\left( {{x^2} – 2x + 1} \right)}}{{{x^2} – 2x + 1}} – \frac{{2\left( {x – 1} \right)}}{{{{\left( {x – 1} \right)}^2}}} + \frac{1}{{{{\left( {x – 1} \right)}^2}}}\\
= 3 – \frac{2}{{x – 1}} + \frac{1}{{{{\left( {x – 1} \right)}^2}}}\\
= \frac{1}{{{{\left( {x – 1} \right)}^2}}} – 2.\frac{1}{{x – 1}} + 1 + 2\\
= {\left( {\frac{1}{{x – 1}} – 1} \right)^2} + 2 \ge 2\forall x \ne 1\\
\Rightarrow Min\,B = 2 \Leftrightarrow \frac{1}{{x – 1}} = 1 \Rightarrow x – 1 = 1 \Rightarrow x = 2\left( {tm} \right)\\
c)\\
C = x\left( {x – 3} \right)\left( {x – 4} \right)\left( {x – 7} \right)\\
= x\left( {x – 7} \right)\left( {x – 3} \right)\left( {x – 4} \right)\\
= \left( {{x^2} – 7x} \right)\left( {{x^2} – 7x + 12} \right)\\
= {\left( {{x^2} – 7x} \right)^2} + 12\left( {{x^2} – 7x} \right) + 36 – 36\\
= {\left( {{x^2} – 7x + 6} \right)^2} – 36 \ge – 36\forall x\\
\Rightarrow \min C = – 36\, \Leftrightarrow {x^2} – 7x + 6 = 0\\
\Rightarrow x = 1/x = 6
\end{array}$