$tìm MIN$
`A` = `|2`x` – `\frac{1}{3}` |` – `1` $và$ `\frac{3}{4}`
`B` = `\frac{1}{3}` |`x` – `2`| + `2`|`3` – `\frac{1}{2}` . `y`| +`4`
$tìm MIN$
`A` = `|2`x` – `\frac{1}{3}` |` – `1` $và$ `\frac{3}{4}`
`B` = `\frac{1}{3}` |`x` – `2`| + `2`|`3` – `\frac{1}{2}` . `y`| +`4`
$A=|2x-\dfrac{1}{3}|-1\dfrac{3}{4}$
$=|2x-\dfrac{1}{3}|-\dfrac{7}{4}$
$|2x-\dfrac{1}{3}|\ge 0$
$\Leftrightarrow A\ge \dfrac{-7}{4}$
$\min A=\dfrac{-7}{4}\Leftrightarrow 2x-\dfrac{1}{3}=0$
$\Leftrightarrow x=\dfrac{1}{6}$
$B=\dfrac{1}{3}|x-2|+2|3-\dfrac{y}{2}|+4$
$\dfrac{1}{3}|x-2|\ge 0$
$2|3-\dfrac{y}{2}|\ge 0$
$\Leftrightarrow \dfrac{1}{3}|x-2|+2|3-\dfrac{y}{2}|\ge 0$
$\Leftrightarrow B\ge 4$
$\min B=4\Leftrightarrow x-2=3-\dfrac{1}{2}y=0$
$+) x-2=0\Leftrightarrow x=2$
$+) 3-\dfrac{y}{2}=0\Leftrightarrow \dfrac{y}{2}=3\Leftrightarrow y=6$
$\Rightarrow (x;y)=(2;6)$ thì $B\min$
Đáp án:
`Ở dưới`
Giải thích các bước giải:
`A` = | $2x$ – `\frac{1}{3}` | – `\frac{7}{4}`
⇔ | $2x$ – `\frac{1}{3}` | ≥ 0
⇔ | $2x$ – `\frac{1}{3}` | – `\frac{7}{4}` ≥ `\frac{-7}{4}`
⇔ `A` ≥ `\frac{-7}{4}`
`Dấu “=” xảy ra:`
⇔ $2x$ – `\frac{1}{3}` = $0$
⇔$2x$ = `\frac{1}{3}`
⇔ `x` = `\frac{1}{6}`
`Vậy MIN A` = `\frac{-7}{4}` ⇔ `x` = `\frac{1}{6}`
`B` = `\frac{1}{3}` | `x` – $2$ | + 2| 3 – `\frac{y}{2}` + $4$
⇔ `\frac{1}{3}` | `x` – $2$ | ≥ $0$
⇔ $2$ | $3$ – `\frac{y}{2}` | ≥ $0$
⇔ `\frac{1}{3}` | `x` – $2$ | + $2$ | 3 – `\frac{y}{2}` | ≥ $0$
⇔`\frac{1}{3}` | `x` – $2$ | + $2$ | 3- `\frac{y}{2}` | + $4$ ≥ $4$
⇔ `B` ≥ $4$
$Dấu “=” xảy ra:$
⇒ `x` – $2$ = $0$
3 – $\frac{y}{2}$ = $0$
⇒ `x` = $2$
`y` = $6$
`Vậy MIN B` = $4$ ⇔ `x`,`y` ∈ {$2$ ; $6$}