$tìm MIN$ `A` = `|2`x` – `\frac{1}{3}` |` – `1` $và$ `\frac{3}{4}` `B` = `\frac{1}{3}` |`x` – `2`| + `2`|`3` – `\frac{1}{2}` . `y`| +`4`

$tìm MIN$
`A` = `|2`x` – `\frac{1}{3}` |` – `1` $và$ `\frac{3}{4}`
`B` = `\frac{1}{3}` |`x` – `2`| + `2`|`3` – `\frac{1}{2}` . `y`| +`4`

0 bình luận về “$tìm MIN$ `A` = `|2`x` – `\frac{1}{3}` |` – `1` $và$ `\frac{3}{4}` `B` = `\frac{1}{3}` |`x` – `2`| + `2`|`3` – `\frac{1}{2}` . `y`| +`4`”

  1. $A=|2x-\dfrac{1}{3}|-1\dfrac{3}{4}$

    $=|2x-\dfrac{1}{3}|-\dfrac{7}{4}$

    $|2x-\dfrac{1}{3}|\ge 0$

    $\Leftrightarrow A\ge \dfrac{-7}{4}$

    $\min A=\dfrac{-7}{4}\Leftrightarrow 2x-\dfrac{1}{3}=0$

    $\Leftrightarrow x=\dfrac{1}{6}$

    $B=\dfrac{1}{3}|x-2|+2|3-\dfrac{y}{2}|+4$

    $\dfrac{1}{3}|x-2|\ge 0$

    $2|3-\dfrac{y}{2}|\ge 0$

    $\Leftrightarrow \dfrac{1}{3}|x-2|+2|3-\dfrac{y}{2}|\ge 0$

    $\Leftrightarrow B\ge 4$

    $\min B=4\Leftrightarrow x-2=3-\dfrac{1}{2}y=0$

    $+) x-2=0\Leftrightarrow x=2$

    $+) 3-\dfrac{y}{2}=0\Leftrightarrow \dfrac{y}{2}=3\Leftrightarrow y=6$

    $\Rightarrow (x;y)=(2;6)$ thì $B\min$

    Bình luận
  2. Đáp án:

    `Ở dưới`

     

    Giải thích các bước giải:

    `A` = | $2x$ – `\frac{1}{3}` | – `\frac{7}{4}`  

    ⇔ | $2x$ – `\frac{1}{3}` | ≥ 0

    ⇔ | $2x$ – `\frac{1}{3}` | – `\frac{7}{4}` ≥ `\frac{-7}{4}`

    ⇔ `A` ≥ `\frac{-7}{4}`

    `Dấu “=” xảy ra:`

    ⇔ $2x$ – `\frac{1}{3}` = $0$

    ⇔$2x$ = `\frac{1}{3}`

    ⇔ `x` = `\frac{1}{6}`

    `Vậy MIN A` = `\frac{-7}{4}` ⇔ `x` = `\frac{1}{6}`

    `B` = `\frac{1}{3}` | `x` – $2$ | + 2| 3 – `\frac{y}{2}` + $4$

    ⇔ `\frac{1}{3}` | `x` – $2$ | ≥ $0$

    ⇔ $2$ | $3$ – `\frac{y}{2}` | ≥ $0$

    ⇔ `\frac{1}{3}` | `x` – $2$ | + $2$ | 3 – `\frac{y}{2}` | ≥ $0$

    ⇔`\frac{1}{3}` | `x` – $2$ | + $2$ | 3- `\frac{y}{2}` | + $4$ ≥ $4$

    ⇔ `B` ≥ $4$

    $Dấu “=” xảy ra:$

    ⇒ `x` – $2$ = $0$

         3 – $\frac{y}{2}$ = $0$

    ⇒ `x` = $2$

         `y` = $6$

    `Vậy MIN B` = $4$ ⇔ `x`,`y` ∈ {$2$ ; $6$}

          

    Bình luận

Viết một bình luận