Tìm Min a) A = 4x^2 – 4x – 3 b) B = 3m^2 – 6m + 1 c) C= 5a^2 – 4a – 1 d) (x-2)^2 + (x+3)^2 – 2021

Tìm Min
a) A = 4x^2 – 4x – 3
b) B = 3m^2 – 6m + 1
c) C= 5a^2 – 4a – 1
d) (x-2)^2 + (x+3)^2 – 2021

0 bình luận về “Tìm Min a) A = 4x^2 – 4x – 3 b) B = 3m^2 – 6m + 1 c) C= 5a^2 – 4a – 1 d) (x-2)^2 + (x+3)^2 – 2021”

  1. $a)\ A=4x^2-4x-3\\=4x^2-4x+1-4\\=(2x-1)^2-4\ge-4$

    Dấu $=$ xảy ra khi 

    $2x-1=0\Leftrightarrow x=\dfrac{1}{2}$

    Vậy $A_{min}=-4$ khi $x=\dfrac{1}{2}$

    $b)\ B=3m^2-6m+1\\=3(m^2-2m+1)+1-3\\=3(m-1)^2-2\ge-2$

    Dấu $=$ xảy ra khi

    $m-1=0\Leftrightarrow m=1$

    Vậy $B_{min}=-2$ khi $m=1$

    $c)\ C=5a^2-4a-1\\=5(a^2-\dfrac{4}{5}a+\dfrac{4}{25})-1-\dfrac{4}{5}\\=5(a-\dfrac{2}{5})^2-\dfrac{9}{5}\ge\dfrac{-9}{5}$

    Dấu $=$ xảy ra khi

    $a-\dfrac{2}{5}=0\Leftrightarrow a=\dfrac{2}{5}$

    Vậy $C_{min}=\dfrac{-9}{5}$ khi $a=\dfrac{2}{5}$

    $d)\ D=(x-2)^2+(x+3)^2-2021\\=x^2-4x+4+x^2+6x+9-2021\\=2x^2+2x-2008\\=2(x^2+x+\dfrac{1}{4})-2008-\dfrac{1}{2}\\=2(x+\dfrac{1}{2})^2-\dfrac{4017}{2}\ge\dfrac{-4017}{2}$

    Dấu $=$ xảy ra khi 

    $x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}$

    Vậy $D_{min}=\dfrac{-4017}{2}$ khi $x=\dfrac{-1}{2}$

    Bình luận

Viết một bình luận