Tìm Min $a,A=^{}$ $\sqrt[]{x^{2}-4x+7}$ $b,B=^{}$ $\sqrt[]{(x-2007)^{2}}$ $+\sqrt[]{(x-1)^{2}}$ $c,C=^{}$ $\sqrt[]{x^{2}+2y^{2}-6x+4y+11}$ $+\sqrt

Tìm Min
$a,A=^{}$ $\sqrt[]{x^{2}-4x+7}$
$b,B=^{}$ $\sqrt[]{(x-2007)^{2}}$ $+\sqrt[]{(x-1)^{2}}$
$c,C=^{}$ $\sqrt[]{x^{2}+2y^{2}-6x+4y+11}$ $+\sqrt[]{x^{2}+3y^{2}+2x+6y+4}$
$d,D=x-2^{}$ $\sqrt[]{xy}+3y-2$ $\sqrt[]{x}+1$

0 bình luận về “Tìm Min $a,A=^{}$ $\sqrt[]{x^{2}-4x+7}$ $b,B=^{}$ $\sqrt[]{(x-2007)^{2}}$ $+\sqrt[]{(x-1)^{2}}$ $c,C=^{}$ $\sqrt[]{x^{2}+2y^{2}-6x+4y+11}$ $+\sqrt”

  1. Đáp án:

     

    Giải thích các bước giải:

    a) $ A = \sqrt[]{x² – 4x + 7} = \sqrt[]{(x – 2)² + 3} ≥ \sqrt[]{3} $ 

    Vậy $MinA = \sqrt[]{3} ⇔ x – 2 = 0 ⇔ x = 2$

    b)Áp dụng $BĐT GTTĐ : |a| + |b| ≥ |a – b|$

    Dấu $’=’$ xảy ra khi $a.b ≤ 0$

    $ B = \sqrt[]{(x – 2007)²} + \sqrt[]{(x – 1)²} = |x – 2007| + |x – 1|$

    $ ≥ |(x – 2007) – (x – 1)|  = |-2006| = 2006$

    Vậy $MinB = 2006 ⇔ (x – 2007).(x – 1) ≤ 0 ⇔ 1 ≤ x ≤ 2007$

    c)Ta có:

    $ \sqrt[]{x² + 2y² – 6x + 4y + 11 } = \sqrt[]{(x – 3)² + 2(y + 1)²}$

    $ ≥ \sqrt[]{(x – 3)²} = |x – 3| $ Dấu $’=’ ⇔ y + 1 = 0 ⇔ y = – 1 (1)$

    $ \sqrt[]{x² + 3y² + 2x + 6x + 4} = \sqrt[]{(x + 1)² + 3(y + 1)²}$

    $ ≥ \sqrt[]{(x + 1)²} = |x + 1| $Dấu $’=’ ⇔ y + 1 = 0 ⇔ y = – 1 (2)$

    $ C = \sqrt[]{x² + 2y² – 6x + 4y + 11 } + \sqrt[]{x² + 3y² + 2x + 6x + 4}$

    $ ≥ |x – 3| + |x + 1| ≥ |(x – 3) – (x + 1)| = |- 4| = 4 (3)$

    Từ $(1);(2);(3) ⇒ MinC = 4 ⇔ y = – 1; (x – 3)(x + 1) ≤ 0 $

    $ ⇔ y = – 1; – 1 ≤ x ≤ 3$

    d) $x ≥0; y ≥ 0$

    $D = x – 2\sqrt[]{xy} + 3y – 2\sqrt[]{x} + 1$ 

    $ ⇒ 6D = 6x – 12\sqrt[]{xy} + 18y – 12\sqrt[]{x} + 6$ 

    $ = 2(x – 6\sqrt[]{xy} + 18y) + (4x – 12\sqrt[]{x} + 9) – 3 $ 

    $ = 2(\sqrt[]{x} – 3\sqrt[]{y})² + (2\sqrt[]{x} – 3)² – 3 ≥ – 3$

    Vậy $MinD = – \frac{1}{2} ⇔ \sqrt[]{x} – 3\sqrt[]{y} = 2\sqrt[]{x} – 3 = 0$ 

    $ ⇔ \sqrt[]{x} = \frac{3}{2} ⇔ x = \frac{9}{4}; \sqrt[]{y} = \frac{1}{2} ⇔ y = \frac{1}{4}$ 

     

    Bình luận

Viết một bình luận