Tìm Min hoặc Max `a, A = x^2 + x` `b, B = ax^2 + bx + c` `c, C = 8x^2 + 12x + 50`

Tìm Min hoặc Max
`a, A = x^2 + x`
`b, B = ax^2 + bx + c`
`c, C = 8x^2 + 12x + 50`

0 bình luận về “Tìm Min hoặc Max `a, A = x^2 + x` `b, B = ax^2 + bx + c` `c, C = 8x^2 + 12x + 50`”

  1. a) $A = x^2 + x$

    $\to A = \left(x + \dfrac{1}{2}\right)^2 – \dfrac{1}{4}$

    $\to\min A = -\dfrac{1}{4}\Leftrightarrow x = -\dfrac{1}{2}$

    b) $B = ax^2 + bx + c$

    $\to B = a\left(x^2 + 2.\dfrac{b}{2a}x+ \dfrac{b^2}{4a^2}\right) + c -\dfrac{b^2}{4a}$

    $\to B = a\left(x + \dfrac{b}{2a}\right)^2 + c -\dfrac{b^2}{4a}$

    Với $a > 0$

    $\to \min A = c -\dfrac{b^2}{4a}\Leftrightarrow x = -\dfrac{b}{2a}$

    Với $a < 0$

    $\to \max A = c -\dfrac{b^2}{4a}\Leftrightarrow x = -\dfrac{b}{2a}$

    c) $C = 8x^2 + 12x + 50$

    $\to C = 8\left(x +\dfrac{3}{4}\right)^2 +\dfrac{91}{2}$

    $\to \min C = \dfrac{91}{2}\Leftrightarrow x = -\dfrac{3}{4}$

    Bình luận

Viết một bình luận