Tìm $min_{P}=\dfrac{(x+1)(x+2)(x+3)(x+4)+1}{x^{2}+5x+5}$ 29/11/2021 Bởi Natalia Tìm $min_{P}=\dfrac{(x+1)(x+2)(x+3)(x+4)+1}{x^{2}+5x+5}$
Đáp án: $\min P = -\dfrac54 \Leftrightarrow x = -\dfrac52$ Giải thích các bước giải: $\left(x \ne \dfrac{-5\pm \sqrt5}{2}\right)$ $\quad P = \dfrac{(x+1)(x+2)(x+3)(x+4) +1}{x^2 + 5x + 5}$ $\to P = \dfrac{[(x+1)(x+4)][(x+2)(x+3)] +1}{x^2 + 5x + 5}$ $\to P =\dfrac{(x^2 + 5x + 4)(x^2 + 5x + 6) +1}{x^2 + 5x + 5}$ $\to P =\dfrac{(x^2 + 5x + 5 -1)(x^2 + 5x + 5+1) +1}{x^2 + 5x + 5}$ $\to P = \dfrac{(x^2 + 5x+ 5)^2 – 1 + 1}{x^2 + 5x +5}$ $\to P = x^2 + 5x + 5$ $\to P = x^2 + 2\cdot\dfrac52x + \dfrac{25}{4} -\dfrac54$ $\to P = \left(x +\dfrac52\right)^2 -\dfrac54$ $\to P \geq -\dfrac54$ Dấu $=$ xảy ra $\Leftrightarrow x = -\dfrac52$ Vậy $\min P = -\dfrac54 \Leftrightarrow x = -\dfrac52$ Bình luận
`P=((x+1)(x+2)(x+3)(x+4)+1)/(x^2+5x+5)` `⇒P=([(x+1)(x+4)][(x+2)(x+3)+1])/(x^2+5x+5)` `⇒P=((x^2+5x+4)(x^2+5x+6)+1)/(x^2+5x+5)` $(*) $ Đặt $x^2+5x+5=a$ thay vào $(*)$ ta có: `⇒P=((a-1)(a+1)+1)/a` `⇒P=(a^2-1+1)/a` `⇒P=a^2/a` `⇒P=a` `⇒P=x^2+5x+5` `⇒P=x^2+2.5/2x+25/4+5-25/4` `⇒P=(x+5/2)^2-5/4≥-5/4` Dấu “=” xảy ra khi `x+5/2=0` `⇒x=-5/2` Vậy `Pmin=-5/4` đạt tại `x=-5/2` Bình luận
Đáp án:
$\min P = -\dfrac54 \Leftrightarrow x = -\dfrac52$
Giải thích các bước giải:
$\left(x \ne \dfrac{-5\pm \sqrt5}{2}\right)$
$\quad P = \dfrac{(x+1)(x+2)(x+3)(x+4) +1}{x^2 + 5x + 5}$
$\to P = \dfrac{[(x+1)(x+4)][(x+2)(x+3)] +1}{x^2 + 5x + 5}$
$\to P =\dfrac{(x^2 + 5x + 4)(x^2 + 5x + 6) +1}{x^2 + 5x + 5}$
$\to P =\dfrac{(x^2 + 5x + 5 -1)(x^2 + 5x + 5+1) +1}{x^2 + 5x + 5}$
$\to P = \dfrac{(x^2 + 5x+ 5)^2 – 1 + 1}{x^2 + 5x +5}$
$\to P = x^2 + 5x + 5$
$\to P = x^2 + 2\cdot\dfrac52x + \dfrac{25}{4} -\dfrac54$
$\to P = \left(x +\dfrac52\right)^2 -\dfrac54$
$\to P \geq -\dfrac54$
Dấu $=$ xảy ra $\Leftrightarrow x = -\dfrac52$
Vậy $\min P = -\dfrac54 \Leftrightarrow x = -\dfrac52$
`P=((x+1)(x+2)(x+3)(x+4)+1)/(x^2+5x+5)`
`⇒P=([(x+1)(x+4)][(x+2)(x+3)+1])/(x^2+5x+5)`
`⇒P=((x^2+5x+4)(x^2+5x+6)+1)/(x^2+5x+5)` $(*) $
Đặt $x^2+5x+5=a$ thay vào $(*)$ ta có:
`⇒P=((a-1)(a+1)+1)/a`
`⇒P=(a^2-1+1)/a`
`⇒P=a^2/a`
`⇒P=a`
`⇒P=x^2+5x+5`
`⇒P=x^2+2.5/2x+25/4+5-25/4`
`⇒P=(x+5/2)^2-5/4≥-5/4`
Dấu “=” xảy ra khi `x+5/2=0`
`⇒x=-5/2`
Vậy `Pmin=-5/4` đạt tại `x=-5/2`