Tìm n để : a, 13 -2n chia hết cho 3n+1 b, n^2-n+1/n-2 là số nguyên c, 5n2 -3n+2 chia hết cho n-2 24/10/2021 Bởi Everleigh Tìm n để : a, 13 -2n chia hết cho 3n+1 b, n^2-n+1/n-2 là số nguyên c, 5n2 -3n+2 chia hết cho n-2
Giải thích các bước giải: a.Ta có: $13-2n\quad\vdots\quad 3n+1$ $\to 3(13-2n)\quad\vdots\quad 3n+1$ $\to 39-6n\quad\vdots\quad 3n+1$ $\to 39+2-6n-2\quad\vdots\quad 3n+1$ $\to 41-2(3n+1)\quad\vdots\quad 3n+1$ $\to 41\quad\vdots\quad 3n+1$ $\to 3n+1\in U(41)$ vì $n\in Z$ Mà $3n+1$ chia $3$ dư $1$ $\to 3n+1\in\{-41,1\}$ $\to 3n\in\{-42, 0\}$ $\to n\in\{-14, 0\}$ b.Để $\dfrac{n^2-n+1}{n-2}$ là số nguyên $\to n^2-n+1\quad\vdots\quad n-2$ vì $n\in Z$ $\to (n^2-2n)+(n-2)+3\quad\vdots\quad n-2$ $\to n(n-2)+(n-2)+3\quad\vdots\quad n-2$ $\to 3\quad\vdots\quad n-2$ $\to n-2\in U(3)$ vì $n\in Z$ $\to n-2\in\{1,3,-1,-3\}$ $\to n\in\{3,5,1,-1\}$ c.Ta có: $5n^2-3n+2\quad\vdots\quad n-2$ $\to (5n^2-10n)+(7n-14)+16\quad\vdots\quad n-2$ $\to 5n(n-2)+7(n-2)+16\quad\vdots\quad n-2$ $\to 16\quad\vdots\quad n-2$ $\to n-2\in U(16)$ vì $n\in Z$ $\to n-2\in\{1,2,4,16,-1,-2,-4,-16\}$ $\to n\in\{3,4,6,18,1,0,-2,-14\}$ Bình luận
a.Ta có 13−2n⋮3n+113−2n⋮3n+1 =>3(13−2n)⋮3n+1→3(13−2n)⋮3n+1 =>39−6n⋮3n+1→39−6n⋮3n+1 =>39+2−6n−2⋮3n+1→39+2−6n−2⋮3n+1 =>41−2(3n+1)⋮3n+1→41−2(3n+1)⋮3n+1 =>41⋮3n+1→41⋮3n+1 =>3n+1∈U(41)→3n+1∈U(41) vì n∈Zn∈Z Mà 3n+13n+1 chia 33 dư 11 =>3n+1∈{−41,1}→3n+1∈{−41,1} =>3n∈{−42,0}→3n∈{−42,0} =>n∈{−14,0}→n∈{−14,0} b. Để n2−n+1n−2n2−n+1n−2 là số nguyên Thì: n2−n+1⋮n−2→n2−n+1⋮n−2 vì n∈Zn∈Z =>(n2−2n)+(n−2)+3⋮n−2→(n2−2n)+(n−2)+3⋮n−2 =>n(n−2)+(n−2)+3⋮n−2→n(n−2)+(n−2)+3⋮n−2 =>3⋮n−2→3⋮n−2 =>n−2∈U(3)→n−2∈U(3) vì n∈Zn∈Z =>n−2∈{1,3,−1,−3}→n−2∈{1,3,−1,−3} =>n∈{3,5,1,−1}→n∈{3,5,1,−1} c.Ta có: 5n2−3n+2⋮n−25n2−3n+2⋮n−2 =>(5n2−10n)+(7n−14)+16⋮n−2→(5n2−10n)+(7n−14)+16⋮n−2 =>5n(n−2)+7(n−2)+16⋮n−2→5n(n−2)+7(n−2)+16⋮n−2→16⋮n−2→16⋮n−2 =>n−2∈U(16)→n−2∈U(16) vì n∈Zn∈Z =>n−2∈{1,2,4,16,−1,−2,−4,−16}→n−2∈{1,2,4,16,−1,−2,−4,−16} =>n∈{3,4,6,18,1,0,−2,−14} Bình luận
Giải thích các bước giải:
a.Ta có:
$13-2n\quad\vdots\quad 3n+1$
$\to 3(13-2n)\quad\vdots\quad 3n+1$
$\to 39-6n\quad\vdots\quad 3n+1$
$\to 39+2-6n-2\quad\vdots\quad 3n+1$
$\to 41-2(3n+1)\quad\vdots\quad 3n+1$
$\to 41\quad\vdots\quad 3n+1$
$\to 3n+1\in U(41)$ vì $n\in Z$
Mà $3n+1$ chia $3$ dư $1$
$\to 3n+1\in\{-41,1\}$
$\to 3n\in\{-42, 0\}$
$\to n\in\{-14, 0\}$
b.Để $\dfrac{n^2-n+1}{n-2}$ là số nguyên
$\to n^2-n+1\quad\vdots\quad n-2$ vì $n\in Z$
$\to (n^2-2n)+(n-2)+3\quad\vdots\quad n-2$
$\to n(n-2)+(n-2)+3\quad\vdots\quad n-2$
$\to 3\quad\vdots\quad n-2$
$\to n-2\in U(3)$ vì $n\in Z$
$\to n-2\in\{1,3,-1,-3\}$
$\to n\in\{3,5,1,-1\}$
c.Ta có:
$5n^2-3n+2\quad\vdots\quad n-2$
$\to (5n^2-10n)+(7n-14)+16\quad\vdots\quad n-2$
$\to 5n(n-2)+7(n-2)+16\quad\vdots\quad n-2$
$\to 16\quad\vdots\quad n-2$
$\to n-2\in U(16)$ vì $n\in Z$
$\to n-2\in\{1,2,4,16,-1,-2,-4,-16\}$
$\to n\in\{3,4,6,18,1,0,-2,-14\}$
a.Ta có
13−2n⋮3n+113−2n⋮3n+1
=>3(13−2n)⋮3n+1→3(13−2n)⋮3n+1
=>39−6n⋮3n+1→39−6n⋮3n+1
=>39+2−6n−2⋮3n+1→39+2−6n−2⋮3n+1
=>41−2(3n+1)⋮3n+1→41−2(3n+1)⋮3n+1
=>41⋮3n+1→41⋮3n+1
=>3n+1∈U(41)→3n+1∈U(41) vì n∈Zn∈Z
Mà 3n+13n+1 chia 33 dư 11
=>3n+1∈{−41,1}→3n+1∈{−41,1}
=>3n∈{−42,0}→3n∈{−42,0}
=>n∈{−14,0}→n∈{−14,0}
b. Để n2−n+1n−2n2−n+1n−2 là số nguyên
Thì: n2−n+1⋮n−2→n2−n+1⋮n−2 vì n∈Zn∈Z
=>(n2−2n)+(n−2)+3⋮n−2→(n2−2n)+(n−2)+3⋮n−2
=>n(n−2)+(n−2)+3⋮n−2→n(n−2)+(n−2)+3⋮n−2
=>3⋮n−2→3⋮n−2
=>n−2∈U(3)→n−2∈U(3) vì n∈Zn∈Z
=>n−2∈{1,3,−1,−3}→n−2∈{1,3,−1,−3}
=>n∈{3,5,1,−1}→n∈{3,5,1,−1}
c.Ta có:
5n2−3n+2⋮n−25n2−3n+2⋮n−2
=>(5n2−10n)+(7n−14)+16⋮n−2→(5n2−10n)+(7n−14)+16⋮n−2
=>5n(n−2)+7(n−2)+16⋮n−2→5n(n−2)+7(n−2)+16⋮n−2→16⋮n−2→16⋮n−2
=>n−2∈U(16)→n−2∈U(16) vì n∈Zn∈Z
=>n−2∈{1,2,4,16,−1,−2,−4,−16}→n−2∈{1,2,4,16,−1,−2,−4,−16}
=>n∈{3,4,6,18,1,0,−2,−14}