Tìm n để : $\frac{3n+41}{4n+7}$ là phân số tối giản

Tìm n để : $\frac{3n+41}{4n+7}$ là phân số tối giản

0 bình luận về “Tìm n để : $\frac{3n+41}{4n+7}$ là phân số tối giản”

  1. Đáp án + Giải thích các bước giải:

    Gọi $d = \text{ƯCLN}(3n + 1, 4n + 7)$

    $\Rightarrow 3n + 1 \vdots d, 4n + 7 \vdots d$

    $\Rightarrow 4(3n + 1) \vdots d, 3(4n + 7) \vdots d$

    $\Rightarrow (12n + 21) – (12n + 4) \vdots d \Rightarrow 7 \vdots d$

    Để phân số tối giản thì $4n + 7\not \vdots 7$

    $\Rightarrow 4n + 7 \neq 7k$

    $\Rightarrow n \neq \dfrac{7k-7}{4}$

    #Noob

    Bình luận

Viết một bình luận