Tìm n là số nguyên để các phân số sau là số nguyên 13/n-1;n/5n+1;n-2/5;-32/2n-3;2n+7/5 17/10/2021 Bởi Abigail Tìm n là số nguyên để các phân số sau là số nguyên 13/n-1;n/5n+1;n-2/5;-32/2n-3;2n+7/5
Đáp án: $\begin{array}{l}a)\dfrac{{13}}{{n – 1}} \in Z\\ \Rightarrow \left( {n – 1} \right) \in U\left( {13} \right)\\ \Rightarrow \left( {n – 1} \right) \in \left\{ { – 13; – 1;1;13} \right\}\\ \Rightarrow n \in \left\{ { – 12;0;2;14} \right\}\\b)\dfrac{n}{{5n + 1}} \in Z\\ \Rightarrow n = 0\\c)\dfrac{{n – 2}}{5} \in Z\\ \Rightarrow \left( {n – 1} \right) \vdots 5\\ \Rightarrow n – 1 = 5.k\left( {k \in Z} \right)\\ \Rightarrow n = 5k + 1\left( {k \in Z} \right)\\d)\dfrac{{ – 32}}{{2n – 3}} \in Z\\ \Rightarrow 2n – 3 \in U\left( {32} \right)\\ \Rightarrow \left( {2n – 3} \right) \in \left\{ \begin{array}{l} – 32; – 16; – 8; – 4; – 2; – 1;\\1;2;4;8;16;32\end{array} \right\}\\ \Rightarrow 2n \in \left\{ { – 29; – 13; – 5; – 1;1;2;4;5;7;11;19;35} \right\}\\ \Rightarrow 2n \in \left\{ {2;4} \right\}\\ \Rightarrow n \in \left\{ {1;2} \right\}\\e)\dfrac{{2n + 7}}{5} \in Z\\ \Rightarrow 2n + 7 = 5k\left( {k \in Z} \right)\\ \Rightarrow 2n = 5k – 7\\ \Rightarrow n = \dfrac{{5k – 7}}{2}\left( {k = 2a + 1\left( {a \in Z} \right)} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\dfrac{{13}}{{n – 1}} \in Z\\
\Rightarrow \left( {n – 1} \right) \in U\left( {13} \right)\\
\Rightarrow \left( {n – 1} \right) \in \left\{ { – 13; – 1;1;13} \right\}\\
\Rightarrow n \in \left\{ { – 12;0;2;14} \right\}\\
b)\dfrac{n}{{5n + 1}} \in Z\\
\Rightarrow n = 0\\
c)\dfrac{{n – 2}}{5} \in Z\\
\Rightarrow \left( {n – 1} \right) \vdots 5\\
\Rightarrow n – 1 = 5.k\left( {k \in Z} \right)\\
\Rightarrow n = 5k + 1\left( {k \in Z} \right)\\
d)\dfrac{{ – 32}}{{2n – 3}} \in Z\\
\Rightarrow 2n – 3 \in U\left( {32} \right)\\
\Rightarrow \left( {2n – 3} \right) \in \left\{ \begin{array}{l}
– 32; – 16; – 8; – 4; – 2; – 1;\\
1;2;4;8;16;32
\end{array} \right\}\\
\Rightarrow 2n \in \left\{ { – 29; – 13; – 5; – 1;1;2;4;5;7;11;19;35} \right\}\\
\Rightarrow 2n \in \left\{ {2;4} \right\}\\
\Rightarrow n \in \left\{ {1;2} \right\}\\
e)\dfrac{{2n + 7}}{5} \in Z\\
\Rightarrow 2n + 7 = 5k\left( {k \in Z} \right)\\
\Rightarrow 2n = 5k – 7\\
\Rightarrow n = \dfrac{{5k – 7}}{2}\left( {k = 2a + 1\left( {a \in Z} \right)} \right)
\end{array}$