tìm n thuộc N*, biết rằng:1/21+1/77+1/165+…+1/n^2+4n=56/673 05/09/2021 Bởi Charlie tìm n thuộc N*, biết rằng:1/21+1/77+1/165+…+1/n^2+4n=56/673
`1/21+1/77+1/165+…+1/(n^2+4n)=56/673` `1/3.7+1/7.11+1/11.15+…+1/(n(n+4))=56/673` `1/4(4/3.7+4/7.11+4/11.15+…+4/(n(n+4)))=56/673` `1/4(1/3-1/7+1/7-1/11+1/11-1/15+…+1/n-1/(n+4))=56/673` `1/4(1/3-1/(n+4))=56/673` `1/3-1/(n+4)=56/673:1/4` `1/3-1/(n+4)=224/673` `1/(n+4)=1/3-224/673` `1/(n+4)=1/2019` `n+4=2019` `n=2019-4` `n=2015` Vậy `n=2015`. Bình luận
Đáp án + Giải thích các bước giải: `1/21 + 1/77 + 1/165 + … + 1/(n^2+4n) = 56/673` `to 1/(3.7) + 1/(7.11) + 1/(11.15) + … + 1/(n.(n+4)) = 56/673` `to 1/4 . ( 4/(3.7) + 4/(7.11) + 4/(11.15) + … + 4/(n.(n+4)) ) = 56/673` `to 1/4 . ( 1/3 – 1/7 + 1/7 – 1/11 + 1/11 – 1/15 + … + 1/n – 1/(n+4) ) = 56/673` `to 1/4 . ( 1/3 – 1/(n+4) ) = 56/673` `to 1/3 – 1/(n+4) = 56/673 : 1/4 = 224/673` `to 1/(n+4) = 1/3 – 224/673` `to 1/(n+4) = 1/2019` `to n+4 = 2019` `to n = 2015` Vậy `n = 2015` Bình luận
`1/21+1/77+1/165+…+1/(n^2+4n)=56/673`
`1/3.7+1/7.11+1/11.15+…+1/(n(n+4))=56/673`
`1/4(4/3.7+4/7.11+4/11.15+…+4/(n(n+4)))=56/673`
`1/4(1/3-1/7+1/7-1/11+1/11-1/15+…+1/n-1/(n+4))=56/673`
`1/4(1/3-1/(n+4))=56/673`
`1/3-1/(n+4)=56/673:1/4`
`1/3-1/(n+4)=224/673`
`1/(n+4)=1/3-224/673`
`1/(n+4)=1/2019`
`n+4=2019`
`n=2019-4`
`n=2015`
Vậy `n=2015`.
Đáp án + Giải thích các bước giải:
`1/21 + 1/77 + 1/165 + … + 1/(n^2+4n) = 56/673`
`to 1/(3.7) + 1/(7.11) + 1/(11.15) + … + 1/(n.(n+4)) = 56/673`
`to 1/4 . ( 4/(3.7) + 4/(7.11) + 4/(11.15) + … + 4/(n.(n+4)) ) = 56/673`
`to 1/4 . ( 1/3 – 1/7 + 1/7 – 1/11 + 1/11 – 1/15 + … + 1/n – 1/(n+4) ) = 56/673`
`to 1/4 . ( 1/3 – 1/(n+4) ) = 56/673`
`to 1/3 – 1/(n+4) = 56/673 : 1/4 = 224/673`
`to 1/(n+4) = 1/3 – 224/673`
`to 1/(n+4) = 1/2019`
`to n+4 = 2019`
`to n = 2015`
Vậy `n = 2015`