Tìm n thuộc N để (n^2-3)^2 +16 là 1 số chính phương

By Madelyn

Tìm n thuộc N để (n^2-3)^2 +16 là 1 số chính phương

0 bình luận về “Tìm n thuộc N để (n^2-3)^2 +16 là 1 số chính phương”

  1. $$\eqalign{
    & {\left( {{n^2} – 3} \right)^2} + 16 = {k^2}\,\,\left( {k \in Z} \right) \cr
    & \Leftrightarrow {k^2} – {\left( {{n^2} – 3} \right)^2} = 16 \cr
    & \Leftrightarrow \left( {k – {n^2} + 3} \right)\left( {k + {n^2} – 3} \right) = 16 \cr
    & Do\,\,k,\,\,n \in Z \Rightarrow k – {n^2} + 3 \in U\left( {16} \right) = \left\{ { \pm 1; \pm 2; \pm 4; \pm 8; \pm 16} \right\} \cr
    & TH1:\,\,\left\{ \matrix{
    k – {n^2} + 3 = 1 \hfill \cr
    k + {n^2} – 3 = 16 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = 8 \hfill \cr
    {n^2} = 10\,\,\left( {Loai} \right) \hfill \cr} \right. \cr
    & TH2:\,\,\left\{ \matrix{
    k – {n^2} + 3 = – 1 \hfill \cr
    k + {n^2} – 3 = – 16 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = – {{17} \over 2} \hfill \cr
    {n^2} = – {9 \over 2}\, \hfill \cr} \right.\,\,\left( {Loai} \right) \cr
    & TH3:\,\,\left\{ \matrix{
    k – {n^2} + 3 = 2 \hfill \cr
    k + {n^2} – 3 = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = 5 \hfill \cr
    {n^2} = 6\, \hfill \cr} \right.\,\,\left( {Loai} \right) \cr
    & TH4:\,\,\left\{ \matrix{
    k – {n^2} + 3 = – 2 \hfill \cr
    k + {n^2} – 3 = – 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = – 5 \hfill \cr
    {n^2} = 0\, \Leftrightarrow n = 0 \hfill \cr} \right.\,\,\left( {tm} \right)\, \cr
    & TH5:\,\,\left\{ \matrix{
    k – {n^2} + 3 = 4 \hfill \cr
    k + {n^2} – 3 = – 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = 0 \hfill \cr
    {n^2} = – 1\, \hfill \cr} \right.\,\,\left( {Loai} \right)\, \cr
    & TH6:\,\,\left\{ \matrix{
    k – {n^2} + 3 = – 4 \hfill \cr
    k + {n^2} – 3 = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = 0 \hfill \cr
    {n^2} = 7 \hfill \cr} \right.\,\,\left( {Loai} \right)\, \cr
    & TH7:\,\,\left\{ \matrix{
    k – {n^2} + 3 = 8 \hfill \cr
    k + {n^2} – 3 = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = 5 \hfill \cr
    {n^2} = 0 \Leftrightarrow n = 0\, \hfill \cr} \right.\,\,\left( {tm} \right) \cr
    & TH8:\,\,\left\{ \matrix{
    k – {n^2} + 3 = – 8 \hfill \cr
    k + {n^2} – 3 = – 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = – 5 \hfill \cr
    {n^2} = 6\, \hfill \cr} \right.\,\,\left( {Loai} \right) \cr
    & TH9:\,\,\left\{ \matrix{
    k – {n^2} + 3 = 16 \hfill \cr
    k + {n^2} – 3 = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = {{17} \over 2} \hfill \cr
    {n^2} = – {9 \over 2}\, \hfill \cr} \right.\,\,\left( {Loai} \right) \cr
    & TH10:\,\,\left\{ \matrix{
    k – {n^2} + 3 = – 16 \hfill \cr
    k + {n^2} – 3 = – 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
    k = – {{17} \over 2} \hfill \cr
    {n^2} = {{21} \over 2}\, \hfill \cr} \right.\,\,\left( {Loai} \right) \cr
    & Vay\,\,n = 0 \cr} $$

    Trả lời

Viết một bình luận