tim n thuoc z a, n.n-7 chia het cho n+3 b,n+3 chia het cho n.n-7 n.n la n mu 2 nha 05/11/2021 Bởi Melanie tim n thuoc z a, n.n-7 chia het cho n+3 b,n+3 chia het cho n.n-7 n.n la n mu 2 nha
Giải thích các bước giải: a.Ta có:$n^2-7\quad\vdots\quad n+3$$\to (n^2-3n)+(3n-9)+2\quad\vdots\quad n+3$$\to n(n-3)+3(n-3)+2\quad\vdots\quad n+3$$\to 2\quad\vdots\quad n+3$$\to n+3\in U(2)$$\to n+3\in\{2,1,-1,-2\}$$\to n\in\{-1,-2,-4,-5\}$b.Ta có:$n+3\quad\vdots\quad n^2-7$$\to (n+3)(n-3)\quad\vdots\quad n^2-7$$\to n(n+3)-3(n+3)\quad\vdots\quad n^2-7$$\to n^2+3n-3n-9\quad\vdots\quad n^2-7$$\to n^2-9\quad\vdots\quad n^2-7$$\to n^2-7-2\quad\vdots\quad n^2-7$$\to 2\quad\vdots\quad n^2-7$$\to n^2-7\in U(2)$$\to n^2-7\in\{1,2,-1,-2\}$$\to n^2\in\{8,9,6,5\}$$\to n^2=9$ vì $n^2$ là số chính phương$\to n=\pm3$ Bình luận
Giải thích các bước giải: $a,n^{2}+7⋮n+3 $ $→(n^{2} – 9) + 2⋮n + 3$ $→(n-3)(n+3) + 2 ⋮n+3$ $→2⋮n+3$ $→n+3∈Ư(2)$ $→n+3∈[1;-1;2;-2]$ $→n ∈ [2 ; -4;-1;-5] $b,n+3⋮n² -7$ $→ (n+3)(n+3)⋮n² – 7$ $→ n² – 9 ⋮n²-7$ $→ n² – 7 – 2 ⋮n²-7$ $→2⋮n² – 7$ $→n² – 7 ∈ Ư(2)$ $→n²-7∈[1;-1;2;-2]$ $→n² ∈[8;6;9;5]$ Mà $n∈Z$ $→n² = 9 → n = ±3$ Bình luận
Giải thích các bước giải:
a.Ta có:
$n^2-7\quad\vdots\quad n+3$
$\to (n^2-3n)+(3n-9)+2\quad\vdots\quad n+3$
$\to n(n-3)+3(n-3)+2\quad\vdots\quad n+3$
$\to 2\quad\vdots\quad n+3$
$\to n+3\in U(2)$
$\to n+3\in\{2,1,-1,-2\}$
$\to n\in\{-1,-2,-4,-5\}$
b.Ta có:
$n+3\quad\vdots\quad n^2-7$
$\to (n+3)(n-3)\quad\vdots\quad n^2-7$
$\to n(n+3)-3(n+3)\quad\vdots\quad n^2-7$
$\to n^2+3n-3n-9\quad\vdots\quad n^2-7$
$\to n^2-9\quad\vdots\quad n^2-7$
$\to n^2-7-2\quad\vdots\quad n^2-7$
$\to 2\quad\vdots\quad n^2-7$
$\to n^2-7\in U(2)$
$\to n^2-7\in\{1,2,-1,-2\}$
$\to n^2\in\{8,9,6,5\}$
$\to n^2=9$ vì $n^2$ là số chính phương
$\to n=\pm3$
Giải thích các bước giải:
$a,n^{2}+7⋮n+3 $
$→(n^{2} – 9) + 2⋮n + 3$
$→(n-3)(n+3) + 2 ⋮n+3$
$→2⋮n+3$ $→n+3∈Ư(2)$
$→n+3∈[1;-1;2;-2]$
$→n ∈ [2 ; -4;-1;-5]
$b,n+3⋮n² -7$
$→ (n+3)(n+3)⋮n² – 7$
$→ n² – 9 ⋮n²-7$
$→ n² – 7 – 2 ⋮n²-7$
$→2⋮n² – 7$
$→n² – 7 ∈ Ư(2)$
$→n²-7∈[1;-1;2;-2]$
$→n² ∈[8;6;9;5]$
Mà $n∈Z$ $→n² = 9 → n = ±3$