Tìm n ∈ Z sao cho n có giá trị nguyên a -7/2n-1 b n+9/n-4 c 3n+1/n+5 29/08/2021 Bởi Amara Tìm n ∈ Z sao cho n có giá trị nguyên a -7/2n-1 b n+9/n-4 c 3n+1/n+5
a) `-7/(2n-1)` có giá trị nguyên `<=> -7 \vdots 2n-1` `<=> 2n-1 \in {-7;7;-1;1}` `<=> n \in { -3;0;1;4}` b) `(n+9)/(n-4)` `= ((n-4)+13)/(n-4)` `= 1 + 13/(n-4)` Biểu thức có giá trị nguyên `<=> n -4 \in {-13;13;-1;1}` `<=> n \in {-9;17;3;5}` c) `(3n+1)/(n+5)` `= ((3n+15) – 14)/(n+5)` `= 3 – 14/(n+5)` Biểu thức có giá trị nguyên `<=> n + 5 \in { -14;14;-7;7;-2;2;-1;1}` `<=> n \in { -19;9;-12;2;-7;-3;-6;-4}` Bình luận
$a$) $\dfrac{-7}{2n-1}$ Để $\dfrac{-7}{2n-1}$ $∈$ $Z$ thì : $-7 \vdots 2n-1$ $⇒ 2n-1$ $∈$ `Ư(7)={±1;±7}` $⇔$ $n$ $∈$ `{-3;0;1;4}` Vậy $n$ $∈$ `{-3;0;1;4}` $b$) $\dfrac{n+9}{n-4}$ Để $\dfrac{n+9}{n-4}$ $∈$ $Z$ thì : $n+9 \vdots n-4$ $⇔ n+9 – (n-4) \vdots n-4$ $⇔ n+9 – n + 4 \vdots n-4$ $⇔ 13 \vdots n-4$ $⇒$ $n-4$ $∈$ `Ư(13)={±1;±13}` $⇔$ $n$ $∈$ `{-9;3;5;17}` Vậy $n$ $∈$ `{-9;3;5;17}` $c$) $\dfrac{3n+1}{n+5}$ Để : $\dfrac{3n+1}{n+5}$ $∈$ $Z$ thì: $3n+1 \vdots n+5$ $⇔ 3n+1 – 3(n+5) \vdots n+5$ $⇔ 3n+1 – 3n – 15 \vdots n+5$ $⇔ -14 \vdots n+5$ $⇒$ $n+5$ $∈$ `Ư(14)={±1;±2;±7;±14}` $⇔$ $n$ $∈$ `{-19;-12;-7;-6;-4;-3;2;9}` Vậy $n$ $∈$ `{-19;-12;-7;-6;-4;-3;2;9}` Bình luận
a) `-7/(2n-1)` có giá trị nguyên
`<=> -7 \vdots 2n-1`
`<=> 2n-1 \in {-7;7;-1;1}`
`<=> n \in { -3;0;1;4}`
b) `(n+9)/(n-4)`
`= ((n-4)+13)/(n-4)`
`= 1 + 13/(n-4)`
Biểu thức có giá trị nguyên
`<=> n -4 \in {-13;13;-1;1}`
`<=> n \in {-9;17;3;5}`
c) `(3n+1)/(n+5)`
`= ((3n+15) – 14)/(n+5)`
`= 3 – 14/(n+5)`
Biểu thức có giá trị nguyên
`<=> n + 5 \in { -14;14;-7;7;-2;2;-1;1}`
`<=> n \in { -19;9;-12;2;-7;-3;-6;-4}`
$a$) $\dfrac{-7}{2n-1}$
Để $\dfrac{-7}{2n-1}$ $∈$ $Z$ thì :
$-7 \vdots 2n-1$
$⇒ 2n-1$ $∈$ `Ư(7)={±1;±7}`
$⇔$ $n$ $∈$ `{-3;0;1;4}`
Vậy $n$ $∈$ `{-3;0;1;4}`
$b$) $\dfrac{n+9}{n-4}$
Để $\dfrac{n+9}{n-4}$ $∈$ $Z$ thì :
$n+9 \vdots n-4$
$⇔ n+9 – (n-4) \vdots n-4$
$⇔ n+9 – n + 4 \vdots n-4$
$⇔ 13 \vdots n-4$
$⇒$ $n-4$ $∈$ `Ư(13)={±1;±13}`
$⇔$ $n$ $∈$ `{-9;3;5;17}`
Vậy $n$ $∈$ `{-9;3;5;17}`
$c$) $\dfrac{3n+1}{n+5}$
Để : $\dfrac{3n+1}{n+5}$ $∈$ $Z$ thì:
$3n+1 \vdots n+5$
$⇔ 3n+1 – 3(n+5) \vdots n+5$
$⇔ 3n+1 – 3n – 15 \vdots n+5$
$⇔ -14 \vdots n+5$
$⇒$ $n+5$ $∈$ `Ư(14)={±1;±2;±7;±14}`
$⇔$ $n$ $∈$ `{-19;-12;-7;-6;-4;-3;2;9}`
Vậy $n$ $∈$ `{-19;-12;-7;-6;-4;-3;2;9}`