Tìm nghiệm của bpt: a, gttđ(x+1) > x+3 b, gttđ(2x-1) < x+2 c, 3/(2-x) <= 1 22/09/2021 Bởi Iris Tìm nghiệm của bpt: a, gttđ(x+1) > x+3 b, gttđ(2x-1) < x+2 c, 3/(2-x) <= 1
Đáp án: $\begin{array}{l}a)\left| {x + 1} \right| > x + 3\\ + Khi:x + 3 < 0\left( {luon\,dung} \right)\\ \Rightarrow x < – 3\\ + Khi:x + 3 \ge 0 \Rightarrow x \ge – 3\\ \Rightarrow {\left( {x + 1} \right)^2} > {\left( {x + 3} \right)^2}\\ \Rightarrow {x^2} + 2x + 1 > {x^2} + 6x + 9\\ \Rightarrow 4x < – 8\\ \Rightarrow x < – 2\left( {ktm} \right)\\ \Rightarrow – 3 \le x < – 2\\Vay\,x < – 2\\b)\left| {2x – 1} \right| < x + 2\\Dk:x + 2 > 0\\ \Rightarrow x > – 2\\ \Rightarrow {\left( {2x – 1} \right)^2} < {\left( {x + 2} \right)^2}\\ \Rightarrow 4{x^2} – 4x + 1 < {x^2} + 4x + 4\\ \Rightarrow 3{x^2} < 3\\ \Rightarrow {x^2} < 1\\ \Rightarrow – 1 < x < 1\\Vay\, – 1 < x < 1\\c)\dfrac{3}{{2 – x}} \le 1\\ \Rightarrow \dfrac{{3 – 2 + x}}{{2 – x}} \le 0\\ \Rightarrow \dfrac{{x + 1}}{{2 – x}} \le 0\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 1 \le 0\\2 – x > 0\end{array} \right.\\\left\{ \begin{array}{l}x + 1 \ge 0\\2 – x < 0\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \le – 1\\x < 2\end{array} \right.\\\left\{ \begin{array}{l}x \ge – 1\\x > 2\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x \le – 1\\x > 2\end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\left| {x + 1} \right| > x + 3\\
+ Khi:x + 3 < 0\left( {luon\,dung} \right)\\
\Rightarrow x < – 3\\
+ Khi:x + 3 \ge 0 \Rightarrow x \ge – 3\\
\Rightarrow {\left( {x + 1} \right)^2} > {\left( {x + 3} \right)^2}\\
\Rightarrow {x^2} + 2x + 1 > {x^2} + 6x + 9\\
\Rightarrow 4x < – 8\\
\Rightarrow x < – 2\left( {ktm} \right)\\
\Rightarrow – 3 \le x < – 2\\
Vay\,x < – 2\\
b)\left| {2x – 1} \right| < x + 2\\
Dk:x + 2 > 0\\
\Rightarrow x > – 2\\
\Rightarrow {\left( {2x – 1} \right)^2} < {\left( {x + 2} \right)^2}\\
\Rightarrow 4{x^2} – 4x + 1 < {x^2} + 4x + 4\\
\Rightarrow 3{x^2} < 3\\
\Rightarrow {x^2} < 1\\
\Rightarrow – 1 < x < 1\\
Vay\, – 1 < x < 1\\
c)\dfrac{3}{{2 – x}} \le 1\\
\Rightarrow \dfrac{{3 – 2 + x}}{{2 – x}} \le 0\\
\Rightarrow \dfrac{{x + 1}}{{2 – x}} \le 0\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 1 \le 0\\
2 – x > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 1 \ge 0\\
2 – x < 0
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \le – 1\\
x < 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x \ge – 1\\
x > 2
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x \le – 1\\
x > 2
\end{array} \right.
\end{array}$