Tìm nghiệm của đa thức a ) (x-1/2 ) . (x^2+1).x^3 b)3x^2 -2x – 1 c ) x^2 +2x+1 01/10/2021 Bởi Aubrey Tìm nghiệm của đa thức a ) (x-1/2 ) . (x^2+1).x^3 b)3x^2 -2x – 1 c ) x^2 +2x+1
Đáp án: $\begin{array}{l}a)\left( {x – \dfrac{1}{2}} \right).\left( {{x^2} + 1} \right).{x^3} = 0\\ \Rightarrow \left[ \begin{array}{l}x – \dfrac{1}{2} = 0\\{x^2} + 1 = 0\\{x^3} = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = \dfrac{1}{2}\\{x^2} = – 1\left( {vô\,nghiệm} \right)\\x = 0\end{array} \right.\\Vậy\,x = \dfrac{1}{2}\,hoặc\,x = 0\\b)3{x^2} – 2x – 1 = 0\\ \Rightarrow 3{x^2} – 3x + x – 1 = 0\\ \Rightarrow 3x.\left( {x – 1} \right) + \left( {x – 1} \right) = 0\\ \Rightarrow \left( {x – 1} \right).\left( {3x + 1} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x – 1 = 0\\3x + 1 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 1\\x = – \dfrac{1}{3}\end{array} \right.\\Vậy\,x = 1\,hoặc\,x = – \dfrac{1}{3}\\c){x^2} + 2x + 1 = 0\\ \Rightarrow {x^2} + x + x + 1 = 0\\ \Rightarrow x\left( {x + 1} \right) + \left( {x + 1} \right) = 0\\ \Rightarrow \left( {x + 1} \right).\left( {x + 1} \right) = 0\\ \Rightarrow x + 1 = 0\\ \Rightarrow x = – 1\end{array}$ Vậy x=-1 Bình luận
Đáp án:
$\begin{array}{l}
a)\left( {x – \dfrac{1}{2}} \right).\left( {{x^2} + 1} \right).{x^3} = 0\\
\Rightarrow \left[ \begin{array}{l}
x – \dfrac{1}{2} = 0\\
{x^2} + 1 = 0\\
{x^3} = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \dfrac{1}{2}\\
{x^2} = – 1\left( {vô\,nghiệm} \right)\\
x = 0
\end{array} \right.\\
Vậy\,x = \dfrac{1}{2}\,hoặc\,x = 0\\
b)3{x^2} – 2x – 1 = 0\\
\Rightarrow 3{x^2} – 3x + x – 1 = 0\\
\Rightarrow 3x.\left( {x – 1} \right) + \left( {x – 1} \right) = 0\\
\Rightarrow \left( {x – 1} \right).\left( {3x + 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x – 1 = 0\\
3x + 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 1\\
x = – \dfrac{1}{3}
\end{array} \right.\\
Vậy\,x = 1\,hoặc\,x = – \dfrac{1}{3}\\
c){x^2} + 2x + 1 = 0\\
\Rightarrow {x^2} + x + x + 1 = 0\\
\Rightarrow x\left( {x + 1} \right) + \left( {x + 1} \right) = 0\\
\Rightarrow \left( {x + 1} \right).\left( {x + 1} \right) = 0\\
\Rightarrow x + 1 = 0\\
\Rightarrow x = – 1
\end{array}$
Vậy x=-1