tìm nghiệm của đa thức : f(x)=|3-|x-1||-2x 05/11/2021 Bởi Ariana tìm nghiệm của đa thức : f(x)=|3-|x-1||-2x
`f(x)=|3-|x-1||-2x=0` `⇔|3-|x-1|=2x≥0` – Xét `0\le x< 1` `⇔|3-(1-x)|=2x` `⇔|x+2|=2x` `⇔x+2=2x` `⇔x=2(l)` – Xét `x\ge 1` `⇔|3-(x-1)|=2x` `⇔|4-x|=2x` \(⇔\left[ \begin{array}{l}4-x=2x\\x-4=2x\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=\dfrac{4}{3}\\x=-4(l)\end{array} \right.\) Vậy `x=4/3` Bình luận
Cho $f(x)=0$ $⇔|3-|x-1||-2x=0$ $⇔|3-|x-1||=2x$ ⇔\(\left[ \begin{array}{l}3-|x-1|=2x\\3-|x-1|=-2x\end{array} \right.\) ⇔\(\left[ \begin{array}{l}|x-1|=3-2x\\|x-1|=3+2x\end{array} \right.\) ⇔$x-1=3-2x$ hoặc $x-1=2x-3(l)$ hoặc $x-1=3+2x(l)$ hoặc $x-1=-3-2x(l)$ ⇔$x=4/3$ Bình luận
`f(x)=|3-|x-1||-2x=0`
`⇔|3-|x-1|=2x≥0`
– Xét `0\le x< 1`
`⇔|3-(1-x)|=2x`
`⇔|x+2|=2x`
`⇔x+2=2x`
`⇔x=2(l)`
– Xét `x\ge 1`
`⇔|3-(x-1)|=2x`
`⇔|4-x|=2x`
\(⇔\left[ \begin{array}{l}4-x=2x\\x-4=2x\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=\dfrac{4}{3}\\x=-4(l)\end{array} \right.\)
Vậy `x=4/3`
Cho $f(x)=0$
$⇔|3-|x-1||-2x=0$
$⇔|3-|x-1||=2x$
⇔\(\left[ \begin{array}{l}3-|x-1|=2x\\3-|x-1|=-2x\end{array} \right.\)
⇔\(\left[ \begin{array}{l}|x-1|=3-2x\\|x-1|=3+2x\end{array} \right.\)
⇔$x-1=3-2x$ hoặc $x-1=2x-3(l)$ hoặc $x-1=3+2x(l)$ hoặc $x-1=-3-2x(l)$
⇔$x=4/3$