Tìm nghiệm đa thức : g(x) = 3x ² – 4x f(x) = 4x ³ – x g(x) = $\frac{-2}{5}$ +3x h(x) = 4x – $\frac{16}{5}$ 15/10/2021 Bởi Amara Tìm nghiệm đa thức : g(x) = 3x ² – 4x f(x) = 4x ³ – x g(x) = $\frac{-2}{5}$ +3x h(x) = 4x – $\frac{16}{5}$
$g(x)= 3x^2-4x=0$ $\Leftrightarrow x(3x-4)=0$ – TH1: $x=0$ – TH2: $3x-4=0\Leftrightarrow x=\frac{4}{3}$ Vậy $S=\{ 0;\frac{4}{3}\}$ $f(x)= 4x^3-x=0$ $\Leftrightarrow x(4x^2-1)=0$ $\Leftrightarrow x(2x-1)(2x+1)=0$ – TH1: $x=0$ – TH2: $2x-1=0\Leftrightarrow x=\frac{1}{2}$ – TH3: $2x+1=0\Leftrightarrow x=-\frac{1}{2}$ Vậy $S=\{ 0; \pm \frac{1}{2}\}$ $g(x)= -\frac{2}{5}+3x=0$ $\Leftrightarrow 3x=\frac{2}{5}$ $\Leftrightarrow x=\frac{2}{15}$ Vậy $S= \{\frac{2}{15}\}$ $h(x)= 4x-\frac{16}{5}=0$ $\Leftrightarrow 4x=\frac{16}{5}$ $\Leftrightarrow x=\frac{4}{5}$ Vậy $S= \{\frac{4}{5}\}$ Bình luận
$g(x)= 3x^2-4x=0$
$\Leftrightarrow x(3x-4)=0$
– TH1: $x=0$
– TH2: $3x-4=0\Leftrightarrow x=\frac{4}{3}$
Vậy $S=\{ 0;\frac{4}{3}\}$
$f(x)= 4x^3-x=0$
$\Leftrightarrow x(4x^2-1)=0$
$\Leftrightarrow x(2x-1)(2x+1)=0$
– TH1: $x=0$
– TH2: $2x-1=0\Leftrightarrow x=\frac{1}{2}$
– TH3: $2x+1=0\Leftrightarrow x=-\frac{1}{2}$
Vậy $S=\{ 0; \pm \frac{1}{2}\}$
$g(x)= -\frac{2}{5}+3x=0$
$\Leftrightarrow 3x=\frac{2}{5}$
$\Leftrightarrow x=\frac{2}{15}$
Vậy $S= \{\frac{2}{15}\}$
$h(x)= 4x-\frac{16}{5}=0$
$\Leftrightarrow 4x=\frac{16}{5}$
$\Leftrightarrow x=\frac{4}{5}$
Vậy $S= \{\frac{4}{5}\}$