Tìm nguyên hàm của hàm số : x-1 —————- x^2-2x-3 14/11/2021 Bởi Valentina Tìm nguyên hàm của hàm số : x-1 —————- x^2-2x-3
@Peoss Đáp án: `=\frac{1}{2}(\ln|x-3|+ln|x+1|)+C` Giải thích các bước giải: `\int \frac{x-1}{x^2-2x-3}dx` `=\int \frac{x-1}{(x+1)(x-3)}dx` `=\frac{1}{2}\int \frac{x+1+x-3}{(x+1)(x-3)}dx` `=\frac{1}{2}\int (\frac{1}{x-3}+\frac{1}{x+1})dx` `=\frac{1}{2}(\ln|x-3|+ln|x+1|)+C` Bình luận
Đáp án: $\dfrac{1}{2}\ln|x^2 – 2x -3| +C$ Giải thích các bước giải: $\begin{array}{l}\quad \displaystyle\int\dfrac{x-1}{x^2-2x-3}dx\\ = \dfrac{1}{2}\displaystyle\int\dfrac{2x-2}{x^2-2x-3}dx\\ = \dfrac{1}{2}\displaystyle\int\dfrac{d(x^2 – 2x – 3)}{x^2 – 2x – 3}\\ = \dfrac{1}{2}\ln|x^2 – 2x -3| +C \end{array}$ Bình luận
@Peoss
Đáp án:
`=\frac{1}{2}(\ln|x-3|+ln|x+1|)+C`
Giải thích các bước giải:
`\int \frac{x-1}{x^2-2x-3}dx`
`=\int \frac{x-1}{(x+1)(x-3)}dx`
`=\frac{1}{2}\int \frac{x+1+x-3}{(x+1)(x-3)}dx`
`=\frac{1}{2}\int (\frac{1}{x-3}+\frac{1}{x+1})dx`
`=\frac{1}{2}(\ln|x-3|+ln|x+1|)+C`
Đáp án:
$\dfrac{1}{2}\ln|x^2 – 2x -3| +C$
Giải thích các bước giải:
$\begin{array}{l}\quad \displaystyle\int\dfrac{x-1}{x^2-2x-3}dx\\ = \dfrac{1}{2}\displaystyle\int\dfrac{2x-2}{x^2-2x-3}dx\\ = \dfrac{1}{2}\displaystyle\int\dfrac{d(x^2 – 2x – 3)}{x^2 – 2x – 3}\\ = \dfrac{1}{2}\ln|x^2 – 2x -3| +C \end{array}$