Tìm nguyên hàm $\int {\frac{(x+1)^{2010}}{(3x+1)^{2012}}} \, dx$

Tìm nguyên hàm
$\int {\frac{(x+1)^{2010}}{(3x+1)^{2012}}} \, dx$

0 bình luận về “Tìm nguyên hàm $\int {\frac{(x+1)^{2010}}{(3x+1)^{2012}}} \, dx$”

  1. Ta có

    $\int \dfrac{(x+1)^{2010}}{(3x+1)^{2012}} dx= \int \left( \dfrac{x+1}{3x+1} \right)^{2010} . \dfrac{1}{(3x+1)^2} dx$

    Đặt $t = \dfrac{x+1}{3x+1}$. Khi đó

    $dt = d\left(\dfrac{x+1}{3x+1}\right)$

    $= \left(\dfrac{x+1}{3x+1}\right)’ dx$

    $= \dfrac{-2}{(3x+1)^2}dx$

    Vậy

    $\dfrac{1}{(3x+1)^2} = -\dfrac{dt}{2}$.

    Thay vào ta có

    $\int \dfrac{(x+1)^{2010}}{(3x+1)^{2012}} dx = -\dfrac{1}{2}\int t^{2010} . dt$

    $= -\dfrac{1}{2} \dfrac{t^{2011}}{2011} + c$

    $= -\dfrac{1}{4022} \dfrac{(x+1)^{2011}}{(3x+1)^{2011}} + c$.

    Do đó

    $\int \dfrac{(x+1)^{2010}}{(3x+1)^{2012}} dx = -\dfrac{(x+1)^{2011}}{4022(3x+1)^{2011}} + c$.

    Bình luận

Viết một bình luận