tìm x ∈ Q $\frac{x+4}{2016}$ +$\frac{x+3}{2017}$= $\frac{x+2}{2018}$ +$\frac{x+1}{2019}$ 25/08/2021 Bởi Eliza tìm x ∈ Q $\frac{x+4}{2016}$ +$\frac{x+3}{2017}$= $\frac{x+2}{2018}$ +$\frac{x+1}{2019}$
Đáp án: `x=-2020` Giải thích các bước giải: `(x + 4)/2016 + (x + 3)/2017 = (x + 2)/2018 + (x+1)/2019` `<=> (x + 4)/2016 + (x + 3)/2017 – (x + 2)/2018 – (x + 1)/2019 = 0` `<=> ((x + 4)/2016 + 1) + ((x + 3)/2017 +1) – ((x + 2)/2018 +1)- ((x + 1)/2019 +1)= 0` `<=> (x + 2020)/2016 + (x+2020)/2017 – (x+2020)/2018 – (x+2020)/2019 = 0` `<=> (x+2020)(1/2016 + 1/2017 – 1/2018 – 1/2019) = 0` `⇒ x + 2020 = 0` (do `1/2016 + 1/2017 – 1/2018 – 1/2019` $\neq 0$) `⇔ x = -2020` Bình luận
Đáp án: Giải thích các bước giải: $\frac{x +4}{2016}$ + $\frac{x+3}{2017}$ = $\frac{x+2}{2018}$ + $\frac{x+1}{2019}$ ⇒(1+$\frac{x +4}{2016}$) + (1+$\frac{x+3}{2017}$) = (1+$\frac{x+2}{2018}$) + (1+$\frac{x+1}{2019}$) ⇒$\frac{x +2020}{2016}$ + $\frac{x+2020}{2017}$ = $\frac{x+2020}{2018}$ + $\frac{x+2020}{2019}$ ⇒ $\frac{x +2020}{2016}$ + $\frac{x+2020}{2017}$ – $\frac{x+2020}{2018}$ – $\frac{x+2020}{2019}$ = 0 ⇒ (x + 2020) . ($\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$ – $\frac{1}{2019}$) = 0 Do $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$ – $\frac{1}{2019}$ $ \neq$ 0 ⇒ x + 2020 = 0 ⇒ x = -2020 Vậy x = -2020 Bình luận
Đáp án:
`x=-2020`
Giải thích các bước giải:
`(x + 4)/2016 + (x + 3)/2017 = (x + 2)/2018 + (x+1)/2019`
`<=> (x + 4)/2016 + (x + 3)/2017 – (x + 2)/2018 – (x + 1)/2019 = 0`
`<=> ((x + 4)/2016 + 1) + ((x + 3)/2017 +1) – ((x + 2)/2018 +1)- ((x + 1)/2019 +1)= 0`
`<=> (x + 2020)/2016 + (x+2020)/2017 – (x+2020)/2018 – (x+2020)/2019 = 0`
`<=> (x+2020)(1/2016 + 1/2017 – 1/2018 – 1/2019) = 0`
`⇒ x + 2020 = 0` (do `1/2016 + 1/2017 – 1/2018 – 1/2019` $\neq 0$)
`⇔ x = -2020`
Đáp án:
Giải thích các bước giải:
$\frac{x +4}{2016}$ + $\frac{x+3}{2017}$ = $\frac{x+2}{2018}$ + $\frac{x+1}{2019}$
⇒(1+$\frac{x +4}{2016}$) + (1+$\frac{x+3}{2017}$) = (1+$\frac{x+2}{2018}$) + (1+$\frac{x+1}{2019}$)
⇒$\frac{x +2020}{2016}$ + $\frac{x+2020}{2017}$ = $\frac{x+2020}{2018}$ + $\frac{x+2020}{2019}$
⇒ $\frac{x +2020}{2016}$ + $\frac{x+2020}{2017}$ – $\frac{x+2020}{2018}$ – $\frac{x+2020}{2019}$ = 0
⇒ (x + 2020) . ($\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$ – $\frac{1}{2019}$) = 0
Do $\frac{1}{2016}$ + $\frac{1}{2017}$ – $\frac{1}{2018}$ – $\frac{1}{2019}$ $ \neq$ 0
⇒ x + 2020 = 0
⇒ x = -2020
Vậy x = -2020