Tìm số có 2 chữ số biết: tổng hai số bằng 6, nếu đổi chỗ 2 số với nhau thì đc số mới lớn hơn số cũ 18 đơn vị
(giải bài toán bằng cách lập phương trình hoặc hệ phương trình)
Tìm số có 2 chữ số biết: tổng hai số bằng 6, nếu đổi chỗ 2 số với nhau thì đc số mới lớn hơn số cũ 18 đơn vị
(giải bài toán bằng cách lập phương trình hoặc hệ phương trình)
Đáp án:
`24.`
Giải thích các bước giải:
Gọi số có hai chữ số đó là `\overline{ab}` `(0<a,b<10,a;b∈NN`*`)`
Theo bài ra ta có phương trình `(1)` là: `a+b=6.`
Khi đổi chỗ `2` số với nhau ta được số mới là: `\overline{ba}`
Khi đó, ta có phương trình là: `\overline{ba}-\overline{ab}=18.`
`<=>10b+a-(10a+b)=18`
`<=>10b+a-10a-b=18`
`<=>9b-9a=18`
`<=>b-a=2.` `(2)`
Từ phương trình `(1)` và `(2)`, ta có hệ phương trình: $\begin{cases}a+b=6\\b-a=2\end{cases}$
Cộng theo vế của hai phương trình trong hệ ta được: `2b=8<=>b=4(tm).`
Khi đó, thay `b=4` vào `(1)` ta được `a+4=6<=>a=2(tm).`
Vậy số có hai chữ số cần tìm là: `24.`
Bạn xem trong hình