tìm số có ba chữ số chia hết cho 9 và các chữ số tỉ lệ nghịch với 2;3;6 giúp mik vs 03/12/2021 Bởi Rose tìm số có ba chữ số chia hết cho 9 và các chữ số tỉ lệ nghịch với 2;3;6 giúp mik vs
Đáp án: $963$ Giải thích các bước giải: Gọi số cần tìm là $\overline{abc}, a,b,c$ là chữ số, $a\ne 0$ Ta có $\overline{abc}\quad\vdots\quad\ 9$ $\to a+b+c\quad\vdots\quad 9$ Mà $a,b,c $ là chữ số $,a\ne 0$ $\to 1+0+0\le a+b+c\le 9+9+9$ $\to 1\le a+b+c\le 27$ $\to a+b+c\in\{9,18,27\}$ Lại có $a,b,c$ tỉ lệ nghịch với $2,3,6$ $\to 2a=3b=6c$ $\to \dfrac{2a}{6}=\dfrac{3b}{6}=\dfrac{6c}{6}$ $\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{a+b+c}{2+3+1}=\dfrac{a+b+c}{6}$ Trường hợp $a+b+c=9$ $\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{9}{6}=\dfrac32$ $\to a=3\cdot \dfrac32\notin N\to$ loại Trường hợp $a+b+c=18$ $\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{18}{6}=3$ $\to a=9,b=6, c=3$ $\to$Số cần tìm là $963$ Trường hợp $a+b+c=27$ $\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{27}{6}=\dfrac92$ $\to a=\dfrac{27}{2}$(loại) Bình luận
Đáp án: $963$
Giải thích các bước giải:
Gọi số cần tìm là $\overline{abc}, a,b,c$ là chữ số, $a\ne 0$
Ta có $\overline{abc}\quad\vdots\quad\ 9$
$\to a+b+c\quad\vdots\quad 9$
Mà $a,b,c $ là chữ số $,a\ne 0$
$\to 1+0+0\le a+b+c\le 9+9+9$
$\to 1\le a+b+c\le 27$
$\to a+b+c\in\{9,18,27\}$
Lại có $a,b,c$ tỉ lệ nghịch với $2,3,6$
$\to 2a=3b=6c$
$\to \dfrac{2a}{6}=\dfrac{3b}{6}=\dfrac{6c}{6}$
$\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{a+b+c}{2+3+1}=\dfrac{a+b+c}{6}$
Trường hợp $a+b+c=9$
$\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{9}{6}=\dfrac32$
$\to a=3\cdot \dfrac32\notin N\to$ loại
Trường hợp $a+b+c=18$
$\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{18}{6}=3$
$\to a=9,b=6, c=3$
$\to$Số cần tìm là $963$
Trường hợp $a+b+c=27$
$\to \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{27}{6}=\dfrac92$
$\to a=\dfrac{27}{2}$(loại)