tìm số hạng chứa x^7 trong khai triển : ( 2x^2 – 1/x)^8 22/08/2021 Bởi Katherine tìm số hạng chứa x^7 trong khai triển : ( 2x^2 – 1/x)^8
$(2x^2-\dfrac{1}{x})^8$ $=\sum\limits_{k=0}^8.C_8^k.2^{8-k}.x^{16-2k}.\dfrac{(-1)^k}{x^k}$ $=\sum\limits_{k=0}^8.C_8^k.2^{8-k}.(-1)^k.x^{16-3k}$ $\Rightarrow 16-3k=7\Leftrightarrow k=3$ Vậy số hạng là: $C_8^3.2^{8-3}.(-1)x^7=-1792x^7$ Bình luận
Đáp án: -1792 Giải thích các bước giải: \(Tk+1=C^{k}8.(2x^{2})^{8-k}.(\frac{-1}{x})^{k}=C^{k}8.2^{8-k}.\frac{(-1)^{k}.x^{16-2k}}{x^{k}}=C^{k}8.2^{8-k}.(-1)^{k}.x^{16-3k}\)Hệ số chứa \(x^{7}\): 16-3k=7Vậy: k= 3Hệ số: \(C^{3}8.2^{5}.(-1)^{3}=-1792\) Bình luận
$(2x^2-\dfrac{1}{x})^8$
$=\sum\limits_{k=0}^8.C_8^k.2^{8-k}.x^{16-2k}.\dfrac{(-1)^k}{x^k}$
$=\sum\limits_{k=0}^8.C_8^k.2^{8-k}.(-1)^k.x^{16-3k}$
$\Rightarrow 16-3k=7\Leftrightarrow k=3$
Vậy số hạng là:
$C_8^3.2^{8-3}.(-1)x^7=-1792x^7$
Đáp án: -1792
Giải thích các bước giải:
\(Tk+1=C^{k}8.(2x^{2})^{8-k}.(\frac{-1}{x})^{k}=C^{k}8.2^{8-k}.\frac{(-1)^{k}.x^{16-2k}}{x^{k}}=C^{k}8.2^{8-k}.(-1)^{k}.x^{16-3k}\)
Hệ số chứa \(x^{7}\): 16-3k=7
Vậy: k= 3
Hệ số: \(C^{3}8.2^{5}.(-1)^{3}=-1792\)