Tìm số hạng tổng quát và tính tổng 2035 số hạng đầu của các dãy số sau :a) 2,7,12,17,22,… b) -1,4,-16,64,… 29/07/2021 Bởi Alaia Tìm số hạng tổng quát và tính tổng 2035 số hạng đầu của các dãy số sau :a) 2,7,12,17,22,… b) -1,4,-16,64,…
Đáp án: $\begin{array}{l}a){u_1} = 2;{u_2} = 7;{u_3} = 12\\ \Rightarrow {u_2} – {u_1} = 5;{u_3} – {u_2} = 5\\ \Rightarrow CSC:\left\{ \begin{array}{l}{u_1} = 2\\d = 5\end{array} \right.\\ \Rightarrow TQ:{u_{n + 1}} = {u_n} + 5\\ \Rightarrow {S_{2035}} = \frac{{\left( {2{u_1} + 2034d} \right).2035}}{2} = \frac{{\left( {2.2 + 2034.5} \right).2035}}{2} = 10352045\\b){u_1} = – 1;{u_2} = 4;{u_3} = – 16;{u_4} = 64\\ \Rightarrow {u_2} = {u_1}.\left( { – 4} \right)\\{u_3} = {u_2}.\left( { – 4} \right)\\{u_4} = {u_3}.\left( { – 4} \right)\\ \Rightarrow CSN:\left\{ \begin{array}{l}{u_1} = – 1\\q = – 4\end{array} \right.\\ \Rightarrow TQ:{u_{n + 1}} = {u_n}.\left( { – 4} \right)\\ \Rightarrow {S_{2035}} = \frac{{{u_1}{{\left( {1 – q} \right)}^{2034}}}}{q} = \frac{{ – {5^{2034}}}}{{ – 4}} = \frac{{{5^{2034}}}}{4}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a){u_1} = 2;{u_2} = 7;{u_3} = 12\\
\Rightarrow {u_2} – {u_1} = 5;{u_3} – {u_2} = 5\\
\Rightarrow CSC:\left\{ \begin{array}{l}
{u_1} = 2\\
d = 5
\end{array} \right.\\
\Rightarrow TQ:{u_{n + 1}} = {u_n} + 5\\
\Rightarrow {S_{2035}} = \frac{{\left( {2{u_1} + 2034d} \right).2035}}{2} = \frac{{\left( {2.2 + 2034.5} \right).2035}}{2} = 10352045\\
b){u_1} = – 1;{u_2} = 4;{u_3} = – 16;{u_4} = 64\\
\Rightarrow {u_2} = {u_1}.\left( { – 4} \right)\\
{u_3} = {u_2}.\left( { – 4} \right)\\
{u_4} = {u_3}.\left( { – 4} \right)\\
\Rightarrow CSN:\left\{ \begin{array}{l}
{u_1} = – 1\\
q = – 4
\end{array} \right.\\
\Rightarrow TQ:{u_{n + 1}} = {u_n}.\left( { – 4} \right)\\
\Rightarrow {S_{2035}} = \frac{{{u_1}{{\left( {1 – q} \right)}^{2034}}}}{q} = \frac{{ – {5^{2034}}}}{{ – 4}} = \frac{{{5^{2034}}}}{4}
\end{array}$