Tìm số nguyên k và số p nguyên tố để 3p+1=(3k+1)^2

Tìm số nguyên k và số p nguyên tố để 3p+1=(3k+1)^2

0 bình luận về “Tìm số nguyên k và số p nguyên tố để 3p+1=(3k+1)^2”

  1. Đáp án: $k=1,p=5$

    Giải thích các bước giải:

    Ta có :

    $3p+1=(3k+1)^2$

    $\to 3p+1=9k^2+6k+1$

    $\to 3p=9k^2+6k$

    $\to p=3k^2+2k$

    $\to p=k(3k+2)$

    Vì $p$ là số nguyên tố nên p chỉ có ước là 1 và chính nó

    $\to k=1\to p=5$

    Hoặc $3k+2=1\to 3k=-1\to k=-\dfrac13$ (loại)

    Bình luận

Viết một bình luận