Tìm số nguyên n: a)n+7 chia hết cho n+2 b)9-n chia hết cho n-3 c)n^2+n+17 chia hết cho n+1 d)n^2 +25 chia hết cho n+2 06/07/2021 Bởi aihong Tìm số nguyên n: a)n+7 chia hết cho n+2 b)9-n chia hết cho n-3 c)n^2+n+17 chia hết cho n+1 d)n^2 +25 chia hết cho n+2
a, $n+7⋮n+2$ ⇔ $n+2+5⋮n+2$ ⇒ $n+2∈Ư(5)= {-5;-1;1;5}$ ⇔ $n∈{-7;-3;-1;3}$ b, Tương tự c, $n²+n+17⋮n+1$ ⇔ $n.(n+1)+17⋮n+1$ ⇒ $n+1∈Ư(17)={-17;-1;1;17}$ ⇔ $n∈{-18;-2;0;16}$ d, $n²+25⋮n+2$ ⇔ $n²-4+29⋮n+2$ ⇔ $(n-2).(n+2)+29⋮n+2$ ⇒ $n+2∈Ư(29)={-29;-1;1;29}$ ⇔ $n∈{-31;-3;-1;27}$ Bình luận
a, Ta có: n+7$\vdots$n+2 ⇒n+2+5$\vdots$n+2 ⇒n+2∈Ư(5)={±1;±5} n+2=1⇒n=-1 n+2=-1⇒n=-3 n+2=5⇒n=3 n+2=-5⇒n=-7 Vậy n∈{-1;-3;3;-7} b, Ta có: 9-n$\vdots$n-3 ⇒-(n-3)+6$\vdots$n-3 ⇒n-3∈Ư(6)={±1;±2;±3;±6} n-3=-6⇒n=-3 n-3=-3⇒n=0 n-3=-2⇒n=1 n-3=-1⇒n=2 n-3=1⇒n=4 n-3=2⇒n=5 n-3=3⇒n=6 n-3=6⇒n=9 Vậy n={0,1,2,-3,4,5,6,9} c, Ta có: n²+n+17$\vdots$n+1 ⇒n(n+1)+17$\vdots$n+1 ⇒n+1∈Ư(17)={±1;±17} n+1=-17⇒n=-18 n+1=-1⇒n=-2 n+1=1⇒n=0 n+1=17⇒n=16 Vậy n={-18,-2,0,16} d, Ta có: n²+25$\vdots$n+2 ⇒n²-4-21$\vdots$n+2 ⇒(n-2)(n+2)-21$\vdots$n+2 ⇒n+2∈Ư(21)={±1;±3;±7;±21} n+2=-21⇒n=-23 n+2=-7⇒n=-9 n+2=-3⇒n=-5 n+2=-1⇒n=-3 n+2=1⇒n=-1 n+2=3⇒n=1 n+2=7⇒n=5 n+2=21⇒n=19 Vậy n={-23,-9,-5,-3,-1,1,5,19} Bình luận
a,
$n+7⋮n+2$
⇔ $n+2+5⋮n+2$
⇒ $n+2∈Ư(5)= {-5;-1;1;5}$
⇔ $n∈{-7;-3;-1;3}$
b,
Tương tự
c,
$n²+n+17⋮n+1$
⇔ $n.(n+1)+17⋮n+1$
⇒ $n+1∈Ư(17)={-17;-1;1;17}$
⇔ $n∈{-18;-2;0;16}$
d,
$n²+25⋮n+2$
⇔ $n²-4+29⋮n+2$
⇔ $(n-2).(n+2)+29⋮n+2$
⇒ $n+2∈Ư(29)={-29;-1;1;29}$
⇔ $n∈{-31;-3;-1;27}$
a, Ta có: n+7$\vdots$n+2
⇒n+2+5$\vdots$n+2
⇒n+2∈Ư(5)={±1;±5}
n+2=1⇒n=-1
n+2=-1⇒n=-3
n+2=5⇒n=3
n+2=-5⇒n=-7
Vậy n∈{-1;-3;3;-7}
b, Ta có: 9-n$\vdots$n-3
⇒-(n-3)+6$\vdots$n-3
⇒n-3∈Ư(6)={±1;±2;±3;±6}
n-3=-6⇒n=-3
n-3=-3⇒n=0
n-3=-2⇒n=1
n-3=-1⇒n=2
n-3=1⇒n=4
n-3=2⇒n=5
n-3=3⇒n=6
n-3=6⇒n=9
Vậy n={0,1,2,-3,4,5,6,9}
c, Ta có: n²+n+17$\vdots$n+1
⇒n(n+1)+17$\vdots$n+1
⇒n+1∈Ư(17)={±1;±17}
n+1=-17⇒n=-18
n+1=-1⇒n=-2
n+1=1⇒n=0
n+1=17⇒n=16
Vậy n={-18,-2,0,16}
d, Ta có: n²+25$\vdots$n+2
⇒n²-4-21$\vdots$n+2
⇒(n-2)(n+2)-21$\vdots$n+2
⇒n+2∈Ư(21)={±1;±3;±7;±21}
n+2=-21⇒n=-23
n+2=-7⇒n=-9
n+2=-3⇒n=-5
n+2=-1⇒n=-3
n+2=1⇒n=-1
n+2=3⇒n=1
n+2=7⇒n=5
n+2=21⇒n=19
Vậy n={-23,-9,-5,-3,-1,1,5,19}