Tìm số nguyên x, nếu biết:
1. $2^{x}$ = $4^{3}$
2. $2^{x}$ = $8^{3}$
3. ($\frac{1}{7}$)$^{x}$ = ($\frac{1}{343}$)$^{3}$
4. ($\frac{6}{7}$)$^{x}$ = ($\frac{216}{343}$)$^{111}$
5. $2^{5x+2}$ = $8^{9}$
6. $2^{7x+4}$ = $32^{12}$
7. $4^{-1-5x}$ = $16^{12}$
Chiều đi học rồi
Đáp án:
\(1)\ x=6\\ 2)\ x=9\\ 3)\ x=9\\ 4)\ x=333\\ 5)\ x=5\\ 6)\ x=8\\ 7)\ x=(-5)\)
Giải thích các bước giải:
\(1)\ 2^x=4^3\\ ⇔2^x=(2^2)^3\\ ⇔2^x=2^6\\ ⇔x=6\\ \text{Vậy x = 6}\\ 2)\ 2^x=8^3\\ ⇔2^x=(2^3)^3\\ ⇔2^x=2^9\\ ⇔x=9\\ \text{Vậy x = 9}\\ 3)\ \bigg(\dfrac{1}{7}\bigg)^x=\bigg(\dfrac{1}{343}\bigg)^3\\ ⇔\bigg(\dfrac{1}{7}\bigg)^x=\bigg[\bigg(\dfrac{1}{7}\bigg)^3\bigg]^3\\ ⇔\bigg(\dfrac{1}{7}\bigg)^x=\bigg(\dfrac{1}{7}\bigg)^9\\ ⇔x=9\\ \text{Vậy x = 9}\\ 4)\ \bigg(\dfrac{6}{7}\bigg)^x=\bigg(\dfrac{216}{343}\bigg)^{111}\\ ⇔\bigg(\dfrac{6}{7}\bigg)^x=\bigg[\bigg(\dfrac{6}{7}\bigg)^3\bigg]^{111}\\ =\bigg(\dfrac{6}{7}\bigg)^x=\bigg(\dfrac{6}{7}\bigg)^{333}\\ ⇔x=333\\ \text{Vậy x = 333}\\ 5)\ 2^{5x+2}=8^9\\ ⇔2^{5x+2}=(2^3)^9\\ ⇔2^{5x+2}=2^{27}\\ ⇔5x+2=27\\ ⇔5x=25\\ ⇔x=5\\ \text{Vậy x = 5}\\ 6)\ 2^{7x+4}=32^{12}\\ ⇔2^{7x+4}=(2^5)^{12}\\ ⇔2^{7x+4}=2^{60}\\ ⇔7x+4=60\\ ⇔7x=56\\ ⇔x=8\\ \text{Vậy x = 8}\\ 7)\ 4^{-1-5x}=16^{12}\\ ⇔4^{-1-5x}=(4^2)^{12}\\ ⇔4^{-1-5x}=4^{24}\\ ⇔-1-5x=24\\ ⇔5x=-25\\ ⇔x=-5\\ \text{Vậy x = (- 5)}\)
chúc em học tốt!
Đáp án:
Giải thích các bước giải:
$1.2^x=4^3$
$⇒2^x=2^6$
$⇒x=6$
$2.2^x=8^3$
$⇒2^x=2^9$
$⇒x=9$
$3.\left (\dfrac{1}{7} \right )^x=\left (\dfrac{1}{343} \right )^3$
$⇒\left (\dfrac{1}{7} \right )^x=\left (\dfrac{1}{7} \right )^9$
$⇒x=9$
$4.\left (\dfrac{6}{7} \right )^x=\left (\dfrac{213}{343} \right )^{111}$
$⇒\left (\dfrac{6}{7} \right )^x=\left (\dfrac{6}{7} \right )^{333}$
$⇒x=333$
$5.2^{5x+2}=8^9$
$⇒2^{5x+2}=2^{27}$
$⇒5x+2=27$
$⇒5x=25$
$⇒x=5$
$6.2^{7x+4}=32^{12}$
$⇒2^{7x+4}=2^{60}$
$⇒7x+4=60$
$⇒7x=56$
$⇒x=8$
$7.4^{-1-5x}=16^{12}$
$⇒4^{-1-5x}=4^24$
$⇒-1-5x=24$
$⇒-5x=25$
$⇒x=-5$