Tìm số nguyên x sao cho a) 2x chia hết cho x+5. b) x²+2 chia hết cho x+1 28/11/2021 Bởi Cora Tìm số nguyên x sao cho a) 2x chia hết cho x+5. b) x²+2 chia hết cho x+1
Đáp án: Giải thích các bước giải: $2x$ $\vdots$ $x+5$ $⇒2x+10-10$ $\vdots$ $x+5$ $⇒2.(x+5)-10$ $\vdots$ $x+5$ $⇒10$ $\vdots$ $x+5$ $⇒x+5∈${$10;5;2;1;-1;-2;-5;-10$} $⇒x∈${$5;0;-3;-4;-6;-7;-10;-15$} $ $ $x^{2}+2$ $\vdots$ $x+1$ $⇒x^{2}+x-x+2$ $\vdots$ $x+1$ $⇒x.(x+1)-x+2$ $\vdots$ $x+1$ $⇒-x+2$ $\vdots$ $x+1$ $⇒-x-1+1+2$ $\vdots$ $x+1$ $⇒-(x+1)+3$ $\vdots$ $x+1$ $⇒3$ $\vdots$ $x+1$ $⇒x+1∈${$3;1;-1;-3$} $⇒x∈${$2;0;-2;-4$} Bình luận
$a$) $2x \vdots x+5$ $⇔$ $2x – 2(x+5) \vdots x+5$ $⇔$ $2x – 2x – 10 \vdots x+5$ $⇔$ $-10 \vdots x+5$ $⇒$ $x+5$ ∈ Ư($10$)={$±1;±2;±5;±10$} $⇔$ $x$ ∈ {$-15;-10;-7;-6;-4;-3;0;5$} Vậy $x$ ∈ {$-15;-10;-7;-6;-4;-3;0;5$} $b$) $x^2 + 2 \vdots x+1$ $⇔$ $x^2 + 2 – x(x+1) \vdots x+1$ $⇔$ $x^2 + 2 – x^2 – x \vdots x+1$ $⇔$ $ 2-x \vdots x+1$ $⇔$ $2-x + x+1 \vdots x+1$ $⇔$ $3 \vdots x+1$ $⇒$ $x+1$ ∈ Ư($3$)={$±1;±3$} $⇔$ $x$ ∈ {$-4;-2;0;2$} Vậy $x$ ∈ {$-4;-2;0;2$} Bình luận
Đáp án:
Giải thích các bước giải:
$2x$ $\vdots$ $x+5$
$⇒2x+10-10$ $\vdots$ $x+5$
$⇒2.(x+5)-10$ $\vdots$ $x+5$
$⇒10$ $\vdots$ $x+5$
$⇒x+5∈${$10;5;2;1;-1;-2;-5;-10$}
$⇒x∈${$5;0;-3;-4;-6;-7;-10;-15$}
$ $
$x^{2}+2$ $\vdots$ $x+1$
$⇒x^{2}+x-x+2$ $\vdots$ $x+1$
$⇒x.(x+1)-x+2$ $\vdots$ $x+1$
$⇒-x+2$ $\vdots$ $x+1$
$⇒-x-1+1+2$ $\vdots$ $x+1$
$⇒-(x+1)+3$ $\vdots$ $x+1$
$⇒3$ $\vdots$ $x+1$
$⇒x+1∈${$3;1;-1;-3$}
$⇒x∈${$2;0;-2;-4$}
$a$) $2x \vdots x+5$
$⇔$ $2x – 2(x+5) \vdots x+5$
$⇔$ $2x – 2x – 10 \vdots x+5$
$⇔$ $-10 \vdots x+5$
$⇒$ $x+5$ ∈ Ư($10$)={$±1;±2;±5;±10$}
$⇔$ $x$ ∈ {$-15;-10;-7;-6;-4;-3;0;5$}
Vậy $x$ ∈ {$-15;-10;-7;-6;-4;-3;0;5$}
$b$) $x^2 + 2 \vdots x+1$
$⇔$ $x^2 + 2 – x(x+1) \vdots x+1$
$⇔$ $x^2 + 2 – x^2 – x \vdots x+1$
$⇔$ $ 2-x \vdots x+1$
$⇔$ $2-x + x+1 \vdots x+1$
$⇔$ $3 \vdots x+1$
$⇒$ $x+1$ ∈ Ư($3$)={$±1;±3$}
$⇔$ $x$ ∈ {$-4;-2;0;2$}
Vậy $x$ ∈ {$-4;-2;0;2$}