tìm số nguyên x;y (x-3)(x-5)<0 xy-2x+3y=1 2^x+3+2^x+4=192 2^x.3^x=4.3^2 12/07/2021 Bởi Katherine tìm số nguyên x;y (x-3)(x-5)<0 xy-2x+3y=1 2^x+3+2^x+4=192 2^x.3^x=4.3^2
Đáp án: Giải thích các bước giải: (x-3)(x-5)<0 => (x-3)(x-5)= số âm Vì x-5 < x-3 => x-5 là số âm <=> x-3 là số dương Do x-5 là số âm => x<5 Do x-3 là số dương => x>3 => Ta có: 3<x<5 => x=4 xy-2x+3y=1 => x.(y-2)+3.(y-2)=-5 => (x+3).(y-2)=-5=1.(-5)=(-5).1=(-1).5=5.(-1) Nếu (x+3).(y-2)=1.(-5) =>x= -2; y=(-3) Nếu (x+3).(y-2)=(-5).1 => x=(-8); y=3 Nếu (x+3).(y-2)= (-1).5 => x=(-4); y=7 Nếu (x+3).(y-2)=5.(-1) => x=2; y=1 2^x+3+2^x+4=192 2^x+3.(1+2)=192 => (2^x+3).3=192 => 2^x+3=64 => 2^x+3=2^6 => x+3=6 => x=3 2^x.3^x=4.3^2 => 6^x=36 => 6^x=6^2 => x=2 Bình luận
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\\left( {x – 3} \right)\left( {x – 5} \right) < 0\\TH1:\,\,x \le 3 \Rightarrow \left\{ \begin{array}{l}x – 3 \le 0\\x – 5 < 0\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) \ge 0\\TH2:\,\,\,x \ge 5 \Rightarrow \left\{ \begin{array}{l}x – 3 > 0\\x – 5 \ge 0\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) \ge 0\\TH3:\,\,3 < x < 5 \Rightarrow \left\{ \begin{array}{l}x – 3 > 0\\x – 5 < 0\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) < 0\\x \in Z \Rightarrow x = 4\\b,\\xy – 2x + 3y = 1\\ \Leftrightarrow x\left( {y – 2} \right) + 3\left( {y – 2} \right) = 1 – 6\\ \Leftrightarrow \left( {x + 3} \right)\left( {y – 2} \right) = – 5\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 3 = 1\\y – 2 = – 5\end{array} \right.\\\left\{ \begin{array}{l}x + 3 = – 1\\y – 1 = 5\end{array} \right.\\\left\{ \begin{array}{l}x + 3 = – 5\\y – 1 = 1\end{array} \right.\\\left\{ \begin{array}{l}y + 3 = 5\\y – 1 = – 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = – 2\\y = – 3\end{array} \right.\\\left\{ \begin{array}{l}x = – 4\\y = 6\end{array} \right.\\\left\{ \begin{array}{l}x = – 8\\y = 2\end{array} \right.\\\left\{ \begin{array}{l}x = 2\\y = 0\end{array} \right.\end{array} \right.\\c,\\{2^{x + 3}} + {2^{x + 4}} = 192\\ \Leftrightarrow {2^{x + 3}}\left( {1 + 2} \right) = 192\\ \Leftrightarrow {3.2^{x + 3}} = 192\\ \Leftrightarrow {2^{x + 3}} = 64\\ \Leftrightarrow x + 3 = 6\\ \Leftrightarrow x = 3\\d,\\{2^x}{.3^x} = {4.3^2}\\ \Leftrightarrow {6^x} = {6^2}\\ \Leftrightarrow x = 2\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
(x-3)(x-5)<0
=> (x-3)(x-5)= số âm
Vì x-5 < x-3 => x-5 là số âm
<=> x-3 là số dương
Do x-5 là số âm
=> x<5
Do x-3 là số dương
=> x>3
=> Ta có: 3<x<5
=> x=4
xy-2x+3y=1
=> x.(y-2)+3.(y-2)=-5
=> (x+3).(y-2)=-5=1.(-5)=(-5).1=(-1).5=5.(-1)
Nếu (x+3).(y-2)=1.(-5)
=>x= -2; y=(-3)
Nếu (x+3).(y-2)=(-5).1
=> x=(-8); y=3
Nếu (x+3).(y-2)= (-1).5
=> x=(-4); y=7
Nếu (x+3).(y-2)=5.(-1)
=> x=2; y=1
2^x+3+2^x+4=192
2^x+3.(1+2)=192
=> (2^x+3).3=192
=> 2^x+3=64
=> 2^x+3=2^6
=> x+3=6
=> x=3
2^x.3^x=4.3^2
=> 6^x=36
=> 6^x=6^2
=> x=2
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\left( {x – 3} \right)\left( {x – 5} \right) < 0\\
TH1:\,\,x \le 3 \Rightarrow \left\{ \begin{array}{l}
x – 3 \le 0\\
x – 5 < 0
\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) \ge 0\\
TH2:\,\,\,x \ge 5 \Rightarrow \left\{ \begin{array}{l}
x – 3 > 0\\
x – 5 \ge 0
\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) \ge 0\\
TH3:\,\,3 < x < 5 \Rightarrow \left\{ \begin{array}{l}
x – 3 > 0\\
x – 5 < 0
\end{array} \right. \Rightarrow \left( {x – 3} \right)\left( {x – 5} \right) < 0\\
x \in Z \Rightarrow x = 4\\
b,\\
xy – 2x + 3y = 1\\
\Leftrightarrow x\left( {y – 2} \right) + 3\left( {y – 2} \right) = 1 – 6\\
\Leftrightarrow \left( {x + 3} \right)\left( {y – 2} \right) = – 5\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 3 = 1\\
y – 2 = – 5
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 3 = – 1\\
y – 1 = 5
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 3 = – 5\\
y – 1 = 1
\end{array} \right.\\
\left\{ \begin{array}{l}
y + 3 = 5\\
y – 1 = – 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = – 2\\
y = – 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x = – 4\\
y = 6
\end{array} \right.\\
\left\{ \begin{array}{l}
x = – 8\\
y = 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 2\\
y = 0
\end{array} \right.
\end{array} \right.\\
c,\\
{2^{x + 3}} + {2^{x + 4}} = 192\\
\Leftrightarrow {2^{x + 3}}\left( {1 + 2} \right) = 192\\
\Leftrightarrow {3.2^{x + 3}} = 192\\
\Leftrightarrow {2^{x + 3}} = 64\\
\Leftrightarrow x + 3 = 6\\
\Leftrightarrow x = 3\\
d,\\
{2^x}{.3^x} = {4.3^2}\\
\Leftrightarrow {6^x} = {6^2}\\
\Leftrightarrow x = 2
\end{array}\)