Tìm số tự nhiên n để: a, n ² + 5 chia hết n – 2 b, 5n chia hết n – 1 26/10/2021 Bởi Maya Tìm số tự nhiên n để: a, n ² + 5 chia hết n – 2 b, 5n chia hết n – 1
Đáp án: a) n²+5⋮n−2n+5⋮n−2 =n(n−2)+(2n+5)⋮n−2=n(n−2)+(2n+5)⋮n−2 Vì n(n−1)⋮n−2⇒2n+5⋮n−2n(n−1)⋮n−2⇒2n+5⋮n−2 ⇒n−2+7⋮n−2⇒n−2+7⋮n−2 Vì n−2⋮n−2⇒7⋮n−2n−2⋮n−2⇒7⋮n−2 ⇒n−2∈Ư(7)={±1;±7}⇒n−2∈Ư(7)={±1;±7} ⋅ n−2=−1⇒n=1· n−2=−1⇒n=1 ⋅ n−2=1⇒n=3· n−2=1⇒n=3 ⋅ n−2=−7⇒n=−5· n−2=−7⇒n=−5 ⋅ n−2=7⇒n=9· n−2=7⇒n=9 b) 5n⋮n−15n⋮n−1 =5n−5+5⋮n−1=5n−5+5⋮n−1 =5(n−1)+5⋮n−1=5(n−1)+5⋮n−1 Vì 5(n−1)⋮n−1⇒5⋮n−15(n−1)⋮n−1⇒5⋮n−1 ⇒n−1∈Ư(5)={±1;±5}⇒n−1∈Ư(5)={±1;±5} ⋅ n−1=−1⇒n=0· n−1=−1⇒n=0 ⋅ n−1=1⇒n=2· n−1=1⇒n=2 ⋅ n−1=−5⇒n=−4· n−1=−5⇒n=−4 ⋅ n−1=5⇒n=6 Bình luận
Đáp án: a) $n^2 + 5\;\vdots\; n – 2$ $= n(n-2)+(2n+5)\;\vdots\; n – 2$ Vì $n(n-1)\;\vdots\; n – 2 ⇒ 2n+5\;\vdots\; n – 2$ $⇒n-2+7\;\vdots\; n – 2$ Vì $n-2\;\vdots\; n – 2 ⇒ 7\;\vdots\; n – 2$ $⇒n-2\in Ư(7)=\{±1;±7\}$ $·\ n-2=-1 ⇒ n=1$ $·\ n-2=1 ⇒ n=3$ $·\ n-2=-7 ⇒n=-5$ $·\ n-2=7⇒n=9$ b) $5n\;\vdots\; n-1$ $= 5n-5+5\;\vdots\; n-1$ $= 5(n-1)+5\;\vdots\; n-1$ Vì $5(n-1)\;\vdots\; n-1 ⇒ 5\;\vdots\; n-1$ $⇒n-1\in Ư(5)=\{±1;±5\}$ $·\ n-1=-1 ⇒ n=0$ $·\ n-1=1 ⇒ n=2$ $·\ n-1=-5⇒n=-4$ $·\ n-1=5⇒n=6$ Bình luận
Đáp án:
a) n²+5⋮n−2n+5⋮n−2
=n(n−2)+(2n+5)⋮n−2=n(n−2)+(2n+5)⋮n−2
Vì n(n−1)⋮n−2⇒2n+5⋮n−2n(n−1)⋮n−2⇒2n+5⋮n−2
⇒n−2+7⋮n−2⇒n−2+7⋮n−2
Vì n−2⋮n−2⇒7⋮n−2n−2⋮n−2⇒7⋮n−2
⇒n−2∈Ư(7)={±1;±7}⇒n−2∈Ư(7)={±1;±7}
⋅ n−2=−1⇒n=1· n−2=−1⇒n=1
⋅ n−2=1⇒n=3· n−2=1⇒n=3
⋅ n−2=−7⇒n=−5· n−2=−7⇒n=−5
⋅ n−2=7⇒n=9· n−2=7⇒n=9
b) 5n⋮n−15n⋮n−1
=5n−5+5⋮n−1=5n−5+5⋮n−1
=5(n−1)+5⋮n−1=5(n−1)+5⋮n−1
Vì 5(n−1)⋮n−1⇒5⋮n−15(n−1)⋮n−1⇒5⋮n−1
⇒n−1∈Ư(5)={±1;±5}⇒n−1∈Ư(5)={±1;±5}
⋅ n−1=−1⇒n=0· n−1=−1⇒n=0
⋅ n−1=1⇒n=2· n−1=1⇒n=2
⋅ n−1=−5⇒n=−4· n−1=−5⇒n=−4
⋅ n−1=5⇒n=6
Đáp án:
a) $n^2 + 5\;\vdots\; n – 2$
$= n(n-2)+(2n+5)\;\vdots\; n – 2$
Vì $n(n-1)\;\vdots\; n – 2 ⇒ 2n+5\;\vdots\; n – 2$
$⇒n-2+7\;\vdots\; n – 2$
Vì $n-2\;\vdots\; n – 2 ⇒ 7\;\vdots\; n – 2$
$⇒n-2\in Ư(7)=\{±1;±7\}$
$·\ n-2=-1 ⇒ n=1$
$·\ n-2=1 ⇒ n=3$
$·\ n-2=-7 ⇒n=-5$
$·\ n-2=7⇒n=9$
b) $5n\;\vdots\; n-1$
$= 5n-5+5\;\vdots\; n-1$
$= 5(n-1)+5\;\vdots\; n-1$
Vì $5(n-1)\;\vdots\; n-1 ⇒ 5\;\vdots\; n-1$
$⇒n-1\in Ư(5)=\{±1;±5\}$
$·\ n-1=-1 ⇒ n=0$
$·\ n-1=1 ⇒ n=2$
$·\ n-1=-5⇒n=-4$
$·\ n-1=5⇒n=6$