tìm stn x biết:|2x-2021|=2^2021:4^1009+2021^0 ai nhanh cho ctlhn 17/09/2021 Bởi Hailey tìm stn x biết:|2x-2021|=2^2021:4^1009+2021^0 ai nhanh cho ctlhn
Đáp án: Giải thích các bước giải: `|2x-2021|=2^2021÷4^1009+2021^0` `=>|2x-2021|=2^2021÷2^2018+1` `=>|2x-2021|=9` \(⇒\left[ \begin{array}{l}2x-2021=9\\2x-2021=-9\end{array} \right.\) \(⇒\left[ \begin{array}{l}2x=2030\\2x=2012\end{array} \right.\) \(⇒\left[ \begin{array}{l}x=1015\\x=1006\end{array} \right.\) Vậy `x={1015;1006}` Bình luận
$\begin{array}{l}|2x-2021|=2^{2021}\div4^{1009}+2021^0\\\Leftrightarrow |2x-2021|=2^{2021}\div\left(2^2\right)^{1009}+1\\\Leftrightarrow |2x-2021|=2^{2021}\div2^{2018}+1\\\Leftrightarrow |2x-2021|=2^3+1\\\Leftrightarrow |2x-2021|=8+1\\\Leftrightarrow |2x-2021|=9\\\Leftrightarrow \left[\begin{array}{l}2x-2021=9\\2x-2021=-9 \end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}2x=2030\\2x=2012 \end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}x=1015\\x=1006 \end{array}\right.\\\text{- Vậy $x\in\{1015;1006\}$} \end{array}$ Bình luận
Đáp án:
Giải thích các bước giải:
`|2x-2021|=2^2021÷4^1009+2021^0`
`=>|2x-2021|=2^2021÷2^2018+1`
`=>|2x-2021|=9`
\(⇒\left[ \begin{array}{l}2x-2021=9\\2x-2021=-9\end{array} \right.\)
\(⇒\left[ \begin{array}{l}2x=2030\\2x=2012\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=1015\\x=1006\end{array} \right.\)
Vậy `x={1015;1006}`
$\begin{array}{l}|2x-2021|=2^{2021}\div4^{1009}+2021^0\\\Leftrightarrow |2x-2021|=2^{2021}\div\left(2^2\right)^{1009}+1\\\Leftrightarrow |2x-2021|=2^{2021}\div2^{2018}+1\\\Leftrightarrow |2x-2021|=2^3+1\\\Leftrightarrow |2x-2021|=8+1\\\Leftrightarrow |2x-2021|=9\\\Leftrightarrow \left[\begin{array}{l}2x-2021=9\\2x-2021=-9 \end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}2x=2030\\2x=2012 \end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}x=1015\\x=1006 \end{array}\right.\\\text{- Vậy $x\in\{1015;1006\}$} \end{array}$