Tìm tập giá trị của hàm số lượng giác 1) y = sinx + √3 cosx + 3 2) y = 6cos ²x + cos ²2x 3) y = 3sinx + 4cosx – 1 05/09/2021 Bởi Aubrey Tìm tập giá trị của hàm số lượng giác 1) y = sinx + √3 cosx + 3 2) y = 6cos ²x + cos ²2x 3) y = 3sinx + 4cosx – 1
Đáp án: 1) \(\left[ \begin{array}{l}x = – \dfrac{{2\pi }}{3} + k2\pi \\x = \pi + k2\pi \end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}1)y = 0\\ \to \sin x + \sqrt 3 \cos x + 3 = 0\\ \to \dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x = – \dfrac{{\sqrt 3 }}{2}\\ \to \sin x.\cos \dfrac{\pi }{3} + \sin \dfrac{\pi }{3}.\cos x = – \dfrac{{\sqrt 3 }}{2}\\ \to \sin \left( {x + \dfrac{\pi }{3}} \right) = – \dfrac{{\sqrt 3 }}{2}\\ \to \left[ \begin{array}{l}x + \dfrac{\pi }{3} = – \dfrac{\pi }{3} + k2\pi \\x + \dfrac{\pi }{3} = \dfrac{{4\pi }}{3} + k2\pi \end{array} \right.\\ \to \left[ \begin{array}{l}x = – \dfrac{{2\pi }}{3} + k2\pi \\x = \pi + k2\pi \end{array} \right.\left( {k \in Z} \right)\\2)6{\cos ^2}x + {\cos ^2}2x = 0\\ \to 6{\cos ^2}x + {\left( {2{{\cos }^2}x – 1} \right)^2} = 0\\ \to 6{\cos ^2}x + 4{\cos ^4}x – 4{\cos ^2}x + 1 = 0\\ \to 4{\cos ^4}x + 2{\cos ^2}x + 1 = 0\\Do:4{\cos ^4}x + 2{\cos ^2}x + 1 > 0\forall x\\ \to x \in \emptyset \\3)3\sin x + 4\cos x – 1 = 0\\ \to 3\sin x + 4\cos x = 1\\ \to \dfrac{3}{5}\sin x + \dfrac{4}{5}\cos x = \dfrac{1}{5}\\Đặt:\left\{ \begin{array}{l}\dfrac{3}{5} = \cos a\\\dfrac{4}{5} = \sin a\\\dfrac{1}{5} = \sin B\end{array} \right.\\Pt \to \sin x.\cos a + \sin a.\cos x = \sin B\\ \to \sin \left( {x + a} \right) = \sin B\\ \to \left[ \begin{array}{l}x + a = B + k2\pi \\x + a = \pi – B + k2\pi \end{array} \right.\\ \to \left[ \begin{array}{l}x = B – a + k2\pi \\x = \pi – B – a + k2\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\) Bình luận
Đáp án:
1) \(\left[ \begin{array}{l}
x = – \dfrac{{2\pi }}{3} + k2\pi \\
x = \pi + k2\pi
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
1)y = 0\\
\to \sin x + \sqrt 3 \cos x + 3 = 0\\
\to \dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x = – \dfrac{{\sqrt 3 }}{2}\\
\to \sin x.\cos \dfrac{\pi }{3} + \sin \dfrac{\pi }{3}.\cos x = – \dfrac{{\sqrt 3 }}{2}\\
\to \sin \left( {x + \dfrac{\pi }{3}} \right) = – \dfrac{{\sqrt 3 }}{2}\\
\to \left[ \begin{array}{l}
x + \dfrac{\pi }{3} = – \dfrac{\pi }{3} + k2\pi \\
x + \dfrac{\pi }{3} = \dfrac{{4\pi }}{3} + k2\pi
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – \dfrac{{2\pi }}{3} + k2\pi \\
x = \pi + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
2)6{\cos ^2}x + {\cos ^2}2x = 0\\
\to 6{\cos ^2}x + {\left( {2{{\cos }^2}x – 1} \right)^2} = 0\\
\to 6{\cos ^2}x + 4{\cos ^4}x – 4{\cos ^2}x + 1 = 0\\
\to 4{\cos ^4}x + 2{\cos ^2}x + 1 = 0\\
Do:4{\cos ^4}x + 2{\cos ^2}x + 1 > 0\forall x\\
\to x \in \emptyset \\
3)3\sin x + 4\cos x – 1 = 0\\
\to 3\sin x + 4\cos x = 1\\
\to \dfrac{3}{5}\sin x + \dfrac{4}{5}\cos x = \dfrac{1}{5}\\
Đặt:\left\{ \begin{array}{l}
\dfrac{3}{5} = \cos a\\
\dfrac{4}{5} = \sin a\\
\dfrac{1}{5} = \sin B
\end{array} \right.\\
Pt \to \sin x.\cos a + \sin a.\cos x = \sin B\\
\to \sin \left( {x + a} \right) = \sin B\\
\to \left[ \begin{array}{l}
x + a = B + k2\pi \\
x + a = \pi – B + k2\pi
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = B – a + k2\pi \\
x = \pi – B – a + k2\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)