Tìm TXĐ của hàm số. e. $y=sin.\sqrt{\dfrac{1+x}{1-x}}$ f. $y=cos\sqrt{x}$ g. $y=\dfrac{3}{2cosx}$ 06/08/2021 Bởi Faith Tìm TXĐ của hàm số. e. $y=sin.\sqrt{\dfrac{1+x}{1-x}}$ f. $y=cos\sqrt{x}$ g. $y=\dfrac{3}{2cosx}$
Đáp án: $\begin{array}{l}e)Dkxd:\dfrac{{1 + x}}{{1 – x}} \ge 0\\ \Rightarrow \dfrac{{x + 1}}{{x – 1}} \le 0\\ \Rightarrow – 1 \le x < 1\\ \Rightarrow TXD:D = \left[ { – 1;1} \right)\\f)Dkxd:x \ge 0\\ \Rightarrow TXD:D = \left[ {0; + \infty } \right)\\g)Dkxd:2.\cos x \ne 0\\ \Rightarrow \cos x \ne 0\\ \Rightarrow x \ne \dfrac{\pi }{2} + k\pi \\ \Rightarrow TXD:D = R\backslash \left\{ {\dfrac{\pi }{2} + k\pi /k \in Z} \right\}\end{array}$ Bình luận
e, ĐK: $\dfrac{1+x}{1-x}\ge 0$ $\Leftrightarrow \dfrac{x+1}{x-1}\le 0$ $\Leftrightarrow -1\le x< 1$ $\to D=[-1;1)$ f, ĐK: $x\ge 0$ $\to D=[0;+\infty)$ g, ĐK: $\cos x\ne 0$ $\Leftrightarrow x\ne \dfrac{\pi}{2}+k\pi$ $\to D=\mathbb{R}$ \ $\{\dfrac{\pi}{2}+k\pi\}$ Bình luận
Đáp án:
$\begin{array}{l}
e)Dkxd:\dfrac{{1 + x}}{{1 – x}} \ge 0\\
\Rightarrow \dfrac{{x + 1}}{{x – 1}} \le 0\\
\Rightarrow – 1 \le x < 1\\
\Rightarrow TXD:D = \left[ { – 1;1} \right)\\
f)Dkxd:x \ge 0\\
\Rightarrow TXD:D = \left[ {0; + \infty } \right)\\
g)Dkxd:2.\cos x \ne 0\\
\Rightarrow \cos x \ne 0\\
\Rightarrow x \ne \dfrac{\pi }{2} + k\pi \\
\Rightarrow TXD:D = R\backslash \left\{ {\dfrac{\pi }{2} + k\pi /k \in Z} \right\}
\end{array}$
e,
ĐK: $\dfrac{1+x}{1-x}\ge 0$
$\Leftrightarrow \dfrac{x+1}{x-1}\le 0$
$\Leftrightarrow -1\le x< 1$
$\to D=[-1;1)$
f,
ĐK: $x\ge 0$
$\to D=[0;+\infty)$
g,
ĐK: $\cos x\ne 0$
$\Leftrightarrow x\ne \dfrac{\pi}{2}+k\pi$
$\to D=\mathbb{R}$ \ $\{\dfrac{\pi}{2}+k\pi\}$