tìm x thỏa mãn ( $\frac{3}{2x}$ – $\frac{5}{2})^{60}$ = $(\frac{1}{8})^{20}$ : $(-\frac{1}{4})^{10}$

tìm x thỏa mãn ( $\frac{3}{2x}$ – $\frac{5}{2})^{60}$ = $(\frac{1}{8})^{20}$ : $(-\frac{1}{4})^{10}$

0 bình luận về “tìm x thỏa mãn ( $\frac{3}{2x}$ – $\frac{5}{2})^{60}$ = $(\frac{1}{8})^{20}$ : $(-\frac{1}{4})^{10}$”

  1. Ta có

    $\left( \dfrac{3}{2x} – \dfrac{5}{2} \right)^{60} = \left( \dfrac{1}{8} \right)^{20} : \left( -\dfrac{1}{4} \right)^{10}$

    $<-> \left( \dfrac{3}{2x} – \dfrac{5}{2} \right)^{60} = \dfrac{1}{(2^3)^{20}} : \dfrac{1}{(2^2)^{10}}$

    $<-> \left( \dfrac{3}{2x} – \dfrac{5}{2} \right)^{60} =\dfrac{2^{20}}{2^{60}}$

    $<-> \left( \dfrac{3}{2x} – \dfrac{5}{2} \right)^{60} = \dfrac{1}{2^{40}}$

    $<-> \dfrac{3}{2x} – \dfrac{5}{2} = \pm \dfrac{1}{\sqrt[3]{4}}$

    $<-> \dfrac{3}{2x} = \dfrac{5}{2} \pm \dfrac{1}{\sqrt[3]{4}}$

    $<-> \dfrac{3}{x} = 5 \pm \sqrt[3]{2}$

    $<-> x = \dfrac{3}{5 \pm \sqrt[3]{2}}$

    Vậy $x = \dfrac{3}{5 \pm \sqrt[3]{2}}$.

    Bình luận

Viết một bình luận