Tìm x thuộc Z để các biểu thức sau có giá trị nguyên A=x-2/x+5 B=2x-1/x+1 C=4-x/3x-1 04/07/2021 Bởi Arianna Tìm x thuộc Z để các biểu thức sau có giá trị nguyên A=x-2/x+5 B=2x-1/x+1 C=4-x/3x-1
Đáp án: b. \(\left[ \begin{array}{l}x = 2\\x = – 4\\x = 0\\x = – 2\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a.DK:x \ne – 5\\A = \dfrac{{x – 2}}{{x + 5}} = \dfrac{{x + 5 – 7}}{{x + 5}} = 1 – \dfrac{7}{{x + 5}}\\A \in Z\\ \Leftrightarrow \dfrac{7}{{x + 5}} \in Z\\ \Leftrightarrow x + 5 \in U\left( 7 \right)\\ \to \left[ \begin{array}{l}x + 5 = 7\\x + 5 = – 7\\x + 5 = 1\\x + 5 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 2\\x = – 12\\x = – 4\\x = – 6\end{array} \right.\\b.DK:x \ne – 1\\B = \dfrac{{2x – 1}}{{x + 1}} = \dfrac{{2\left( {x + 1} \right) – 3}}{{x + 1}} = 2 – \dfrac{3}{{x + 1}}\\B \in Z \Leftrightarrow \dfrac{3}{{x + 1}} \in Z\\ \Leftrightarrow x + 1 \in U\left( 3 \right)\\ \to \left[ \begin{array}{l}x + 1 = 3\\x + 1 = – 3\\x + 1 = 1\\x + 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 2\\x = – 4\\x = 0\\x = – 2\end{array} \right.\\c.DK:x \ne \dfrac{1}{3}\\C = \dfrac{{4 – x}}{{3x – 1}}\\ \to 3C = \dfrac{{12 – 3x}}{{3x – 1}} = \dfrac{{ – \left( {3x – 1} \right) + 11}}{{3x – 1}} = – 1 + \dfrac{{11}}{{3x – 1}}\\C \in Z \Leftrightarrow \dfrac{{11}}{{3x – 1}} \in Z\\ \Leftrightarrow 3x – 1 \in U\left( {11} \right)\\ \to \left[ \begin{array}{l}3x – 1 = 11\\3x – 1 = – 11\\3x – 1 = 1\\3x – 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 4\\x = – \dfrac{{10}}{3}\left( l \right)\\x = \dfrac{2}{3}\left( l \right)\\x = 0\end{array} \right.\end{array}\) Bình luận
Đáp án:
b. \(\left[ \begin{array}{l}
x = 2\\
x = – 4\\
x = 0\\
x = – 2
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a.DK:x \ne – 5\\
A = \dfrac{{x – 2}}{{x + 5}} = \dfrac{{x + 5 – 7}}{{x + 5}} = 1 – \dfrac{7}{{x + 5}}\\
A \in Z\\
\Leftrightarrow \dfrac{7}{{x + 5}} \in Z\\
\Leftrightarrow x + 5 \in U\left( 7 \right)\\
\to \left[ \begin{array}{l}
x + 5 = 7\\
x + 5 = – 7\\
x + 5 = 1\\
x + 5 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 2\\
x = – 12\\
x = – 4\\
x = – 6
\end{array} \right.\\
b.DK:x \ne – 1\\
B = \dfrac{{2x – 1}}{{x + 1}} = \dfrac{{2\left( {x + 1} \right) – 3}}{{x + 1}} = 2 – \dfrac{3}{{x + 1}}\\
B \in Z \Leftrightarrow \dfrac{3}{{x + 1}} \in Z\\
\Leftrightarrow x + 1 \in U\left( 3 \right)\\
\to \left[ \begin{array}{l}
x + 1 = 3\\
x + 1 = – 3\\
x + 1 = 1\\
x + 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 2\\
x = – 4\\
x = 0\\
x = – 2
\end{array} \right.\\
c.DK:x \ne \dfrac{1}{3}\\
C = \dfrac{{4 – x}}{{3x – 1}}\\
\to 3C = \dfrac{{12 – 3x}}{{3x – 1}} = \dfrac{{ – \left( {3x – 1} \right) + 11}}{{3x – 1}} = – 1 + \dfrac{{11}}{{3x – 1}}\\
C \in Z \Leftrightarrow \dfrac{{11}}{{3x – 1}} \in Z\\
\Leftrightarrow 3x – 1 \in U\left( {11} \right)\\
\to \left[ \begin{array}{l}
3x – 1 = 11\\
3x – 1 = – 11\\
3x – 1 = 1\\
3x – 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 4\\
x = – \dfrac{{10}}{3}\left( l \right)\\
x = \dfrac{2}{3}\left( l \right)\\
x = 0
\end{array} \right.
\end{array}\)