Tìm x trên đoạn [ -3pi , 3pi] Biết a) sinx =1/2 b) sinx =1 01/08/2021 Bởi Skylar Tìm x trên đoạn [ -3pi , 3pi] Biết a) sinx =1/2 b) sinx =1
a) $\sin x = \dfrac{1}{2}$ $\Leftrightarrow \left[\begin{array}{l} x = \dfrac{\pi}{6} + k2\pi\\x = \dfrac{5\pi}{6} + k2\pi\end{array}\right.\quad (k \in \Bbb Z)$ Ta có: $x \in [-3\pi; 3\pi]$ $\Leftrightarrow \left[\begin{array}{l}-3\pi \leq \dfrac{\pi}{6} + k2\pi \leq 3\pi\\-3\pi \dfrac{5\pi}{6} + k2\pi \leq 3\pi\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}-\dfrac{19}{12}\leq k \leq \dfrac{17}{12}\\-\dfrac{23}{12} \leq k \leq \dfrac{13}{12}\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}k = \left\{-1;0;1\right\}\\k = \left\{-1;0;1\right\}\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x = -\dfrac{11\pi}{6}\\x = \dfrac{\pi}{6}\\x = \dfrac{13\pi}{6}\\x =- \dfrac{7\pi}{6}\\x = \dfrac{5\pi}{6}\\x = \dfrac{17\pi}{6}\end{array}\right.$ b) $\sin x = 1$ $\Leftrightarrow x = \dfrac{\pi}{2} + k2\pi$ Ta có: $x \in [-3\pi;3\pi]$ $\Leftrightarrow – 3\pi \leq x = \dfrac{\pi}{2} + k2\pi \leq 3\pi$ $\Leftrightarrow -\dfrac{7}{4} \leq k \leq \dfrac{5}{4}$ $\Rightarrow k = \left\{-1;0;1\right\}$ $\Rightarrow \left[\begin{array}{l} x = -\dfrac{3\pi}{2}\\x = \dfrac{\pi}{2}\\x = \dfrac{5\pi}{2}\end{array}\right.$ Bình luận
a) $\sin x = \dfrac{1}{2}$
$\Leftrightarrow \left[\begin{array}{l} x = \dfrac{\pi}{6} + k2\pi\\x = \dfrac{5\pi}{6} + k2\pi\end{array}\right.\quad (k \in \Bbb Z)$
Ta có: $x \in [-3\pi; 3\pi]$
$\Leftrightarrow \left[\begin{array}{l}-3\pi \leq \dfrac{\pi}{6} + k2\pi \leq 3\pi\\-3\pi \dfrac{5\pi}{6} + k2\pi \leq 3\pi\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}-\dfrac{19}{12}\leq k \leq \dfrac{17}{12}\\-\dfrac{23}{12} \leq k \leq \dfrac{13}{12}\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}k = \left\{-1;0;1\right\}\\k = \left\{-1;0;1\right\}\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x = -\dfrac{11\pi}{6}\\x = \dfrac{\pi}{6}\\x = \dfrac{13\pi}{6}\\x =- \dfrac{7\pi}{6}\\x = \dfrac{5\pi}{6}\\x = \dfrac{17\pi}{6}\end{array}\right.$
b) $\sin x = 1$
$\Leftrightarrow x = \dfrac{\pi}{2} + k2\pi$
Ta có: $x \in [-3\pi;3\pi]$
$\Leftrightarrow – 3\pi \leq x = \dfrac{\pi}{2} + k2\pi \leq 3\pi$
$\Leftrightarrow -\dfrac{7}{4} \leq k \leq \dfrac{5}{4}$
$\Rightarrow k = \left\{-1;0;1\right\}$
$\Rightarrow \left[\begin{array}{l} x = -\dfrac{3\pi}{2}\\x = \dfrac{\pi}{2}\\x = \dfrac{5\pi}{2}\end{array}\right.$