tìm x,y 1,$x^{2}$ +$y^{2}$+6x-10y+34=0 2, $x^{2}$ +9$y^{2}$ +20x-6y+26=0 3,9$x^{2}$ +12x+4$y^{2}$+8y+8=0 4,4 $x^{2}$ +9$y^{2}$ +20-6y+26=0 5,3$x^{2}$

tìm x,y
1,$x^{2}$ +$y^{2}$+6x-10y+34=0
2, $x^{2}$ +9$y^{2}$ +20x-6y+26=0
3,9$x^{2}$ +12x+4$y^{2}$+8y+8=0
4,4 $x^{2}$ +9$y^{2}$ +20-6y+26=0
5,3$x^{2}$ +3$y^{2}$+6x-12y+15=0
6, $x^{2}$ +4$y^{2}$+4x-4y+5=0
LÀM XONG MÌNH VOTE 5 SAO AI LÀM NHANH VÀ ĐÚNG MIK CHO CTLHN

0 bình luận về “tìm x,y 1,$x^{2}$ +$y^{2}$+6x-10y+34=0 2, $x^{2}$ +9$y^{2}$ +20x-6y+26=0 3,9$x^{2}$ +12x+4$y^{2}$+8y+8=0 4,4 $x^{2}$ +9$y^{2}$ +20-6y+26=0 5,3$x^{2}$”

  1. 1,  x²+y²+6x-10y+34=0

    ⇔ (x²+2.3x+9) + (y²-2.5y+25)=0 

    ⇔ (x+3)²+ (y-5)²=0 

    3, 9x²+12x+4y²+8y+8=0

    ⇔ (9x²+2.3.2x+4)+(4y²+2.2.2y+4)=0 

    ⇔ (3x+2)² + (2y+2)² = 0

    4,   4x²+9y²+20x-6y+26=0

    ⇔ (4x²+2.2.5x+25)+(9y²-2.3y+1)=0

    ⇔ (2x+5)²+(3y-1)²=0

    5, 3x²+3y²+6x-12y+15=0

    ⇔ 3(x²+2x+1)+3(y²-4y+4)=0

    ⇔ 3(x+1)²+3(y-2)²=0

    Bình luận
  2. 1)    x²+y²+6x-10y+34=0

    <=>(x²+2.3x+9)+(y²-2.5y+25)=0

    <=>(x+3)²+(y-5)²=0

    <=>$\left \{ {{(x+3)²=0} \atop {(y-5)²=0}} \right.$ 

    <=>$\left \{ {{x+3=0} \atop {y-5=0}} \right.$ 

    <=>$\left \{ {{x=-3} \atop {y=5}} \right.$ 

    3)    9x²+12x+4y²+8y+8=0

    <=>(9x²+2.3.2x+4)+(4y²+2.2.2y+4)=0

    <=>(3x+2)²+(2y+2)²=0

    <=>$\left \{ {{(3x+2²)=0} \atop {(2y+2)²=0}} \right.$ 

    <=>$\left \{ {{3x+2=0} \atop {2y+2=0}} \right.$ 

    <=>$\left \{ {{x=-2/3} \atop {y=-1}} \right.$ 

    4)   4x²+9y²+20x-6y+26=0

    <=>(4x²+2.2.5x+25)+(9y²-2.3y+1)=0

    <=>(2x+5)²+(3y-1)²=0

    <=>$\left \{ {{2x+5=0} \atop {3y-1=0}} \right.$ 

    <=>$\left \{ {{x=-5/2} \atop {y=1/3}} \right.$ 

    5)     3x²+3y²+6x-12y+15=0

    <=>3(x²+2x+1)+3(y²-4y+4)=0

    <=>3(x+1)²+3(y-2)²=0

    <=>$\left \{ {{x+1=0} \atop {y-2=0}} \right.$ 

    <=>$\left \{ {{x=-1} \atop {y=2}} \right.$ 

    6)     x²+4y²+4x-4y+5=0

    <=>(x²+4x+4)+(4y²-4y+1)=0

    <=>(x+2)²+(2y-1)²=0

    <=>$\left \{ {{x+2=0} \atop {2y-1=0}} \right.$ 

    <=>$\left \{ {{x=-2} \atop {y=1/2}} \right.$ 

     

    Bình luận

Viết một bình luận