tìm x,y
1,$x^{2}$ +$y^{2}$+6x-10y+34=0
2, $x^{2}$ +9$y^{2}$ +20x-6y+26=0
3,9$x^{2}$ +12x+4$y^{2}$+8y+8=0
4,4 $x^{2}$ +9$y^{2}$ +20-6y+26=0
5,3$x^{2}$ +3$y^{2}$+6x-12y+15=0
6, $x^{2}$ +4$y^{2}$+4x-4y+5=0
LÀM XONG MÌNH VOTE 5 SAO AI LÀM NHANH VÀ ĐÚNG MIK CHO CTLHN

1, x²+y²+6x-10y+34=0
⇔ (x²+2.3x+9) + (y²-2.5y+25)=0
⇔ (x+3)²+ (y-5)²=0
⇔ (x+3)²=0 hoặc (y−5)²=0
⇔ x+3=0 hoặc y−5=0
⇔ x=−3 hoặc y =5
3, 9x²+12x+4y²+8y+8=0
⇔ (9x²+2.3.2x+4)+(4y²+2.2.2y+4)=0
⇔ (3x+2)² + (2y+2)² = 0
⇔ (3x+2²)=0 hoặc (2y+2)²=0
⇔ 3x+2=0 hoặc 2y+2=0
⇔ x=$\frac{-2}{3}$ hoặc y=−1
4, 4x²+9y²+20x-6y+26=0
⇔ (4x²+2.2.5x+25)+(9y²-2.3y+1)=0
⇔ (2x+5)²+(3y-1)²=0
⇔ 2x+5=0 hoặc3y−1=0
⇔ x=$\frac{-5}{2}$ hoặc y=$\frac{1}{3}$
5, 3x²+3y²+6x-12y+15=0
⇔ 3(x²+2x+1)+3(y²-4y+4)=0
⇔ 3(x+1)²+3(y-2)²=0
⇔ x+1=0 hoặc y−2=0
⇔ x=−1 hoặc y=2
1) x²+y²+6x-10y+34=0
<=>(x²+2.3x+9)+(y²-2.5y+25)=0
<=>(x+3)²+(y-5)²=0
<=>$\left \{ {{(x+3)²=0} \atop {(y-5)²=0}} \right.$
<=>$\left \{ {{x+3=0} \atop {y-5=0}} \right.$
<=>$\left \{ {{x=-3} \atop {y=5}} \right.$
3) 9x²+12x+4y²+8y+8=0
<=>(9x²+2.3.2x+4)+(4y²+2.2.2y+4)=0
<=>(3x+2)²+(2y+2)²=0
<=>$\left \{ {{(3x+2²)=0} \atop {(2y+2)²=0}} \right.$
<=>$\left \{ {{3x+2=0} \atop {2y+2=0}} \right.$
<=>$\left \{ {{x=-2/3} \atop {y=-1}} \right.$
4) 4x²+9y²+20x-6y+26=0
<=>(4x²+2.2.5x+25)+(9y²-2.3y+1)=0
<=>(2x+5)²+(3y-1)²=0
<=>$\left \{ {{2x+5=0} \atop {3y-1=0}} \right.$
<=>$\left \{ {{x=-5/2} \atop {y=1/3}} \right.$
5) 3x²+3y²+6x-12y+15=0
<=>3(x²+2x+1)+3(y²-4y+4)=0
<=>3(x+1)²+3(y-2)²=0
<=>$\left \{ {{x+1=0} \atop {y-2=0}} \right.$
<=>$\left \{ {{x=-1} \atop {y=2}} \right.$
6) x²+4y²+4x-4y+5=0
<=>(x²+4x+4)+(4y²-4y+1)=0
<=>(x+2)²+(2y-1)²=0
<=>$\left \{ {{x+2=0} \atop {2y-1=0}} \right.$
<=>$\left \{ {{x=-2} \atop {y=1/2}} \right.$