Tìm x,y: a, ( x + y )^2020 + I 2021 – y I ≤ 0 b, I 3x + 2y I^209 + I 4y – 1 I^2020 ≤ 0

Tìm x,y:
a, ( x + y )^2020 + I 2021 – y I ≤ 0
b, I 3x + 2y I^209 + I 4y – 1 I^2020 ≤ 0

0 bình luận về “Tìm x,y: a, ( x + y )^2020 + I 2021 – y I ≤ 0 b, I 3x + 2y I^209 + I 4y – 1 I^2020 ≤ 0”

  1. a,

    Ta có:

    $\begin{cases}(x+y)^{2020}\ge0 \ ∀x;y\\|2021-y|\ge0 \ ∀y\end{cases}$

    $\to (x+y)^{2020}+|2021-y|\ge0 \ ∀x;y$ 

    Mà $(x+y)^{2020}+|2021-y|\le0$

    $\to (x+y)^{2020}+|2021-y|=0$

    $↔\begin{cases}x+y=0\\2021-y=0\end{cases}↔\begin{cases}x=-2021\\y=2021\end{cases}$

    Vậy $(x;y)=(-2021;2021)$

    b,

    Ta có:

    $\begin{cases}|3x+2y|^{209}\ge0 \ ∀x;y\\|4y-1|^{2020}\ge0 \ ∀y\end{cases}$

    $\to |3x+2y|^{209}+|4y-1|^{2020}\ge0$

    Mà $|3x+2y|^{209}+|4y-1|^{2020}\le0$

    $\to |3x+2y|^{209}+|4y-1|^{2020}=0$

    $↔\begin{cases}3x+2y=0\\4y-1=0\end{cases}↔\begin{cases}x=-\dfrac{1}{6}\\y=\dfrac{1}{4}\end{cases}$

    Vậy `(x;y)=(-1/6;1/4)` 

    Bình luận
  2. Tham khảo

     `a)` Vì `(x+y)^{2020}≥0∀x;y`

              `|2021-y|≥0∀y`

    Mà `(x+y)^{2020}+|2021-y|≤0`

    `→`\(\left[ \begin{array}{l}x+y=0\\2021-y=0\end{array} \right.\) 

    `→`\(\left[ \begin{array}{l}x=-y\\y=2021\end{array} \right.\) 

    `→`\(\left[ \begin{array}{l}x=-2021\\y=2021\end{array} \right.\) 

    Vậy `x=-2021;y=2021`

    `b)` Vì `|3x+2y|^{209}≥0∀x;y`

            `|4y-1|^{2020}≥0∀y`

    Mà `|3x+2y|^{209}+|4y-1|^{2020}≤0`

    `→`\(\left[ \begin{array}{l}3x+2y=0\\4y-1=0\end{array} \right.\) 

    `→`\(\left[ \begin{array}{l}3x=-2y\\4y=1\end{array} \right.\)

    `→`\(\left[ \begin{array}{l}3x=-2y\\y=\dfrac{1}{4}\end{array} \right.\)

    `→`\(\left[ \begin{array}{l}3x=\dfrac{-1}{2}\\y=\dfrac{1}{4}\end{array} \right.\)

    `→`\(\left[ \begin{array}{l}x=\dfrac{-1}{6}\\y=\dfrac{1}{4}\end{array} \right.\)

    Vậy ` x=\frac{-1}{6};y=\frac{1}{4}`

    Bình luận

Viết một bình luận