Tìm x, y biết: (2x+1)/5=(4y-5)/9=(2x+4y-4) /7x Giúp mình nha(^-^) 18/11/2021 Bởi Claire Tìm x, y biết: (2x+1)/5=(4y-5)/9=(2x+4y-4) /7x Giúp mình nha(^-^)
Đáp án: $(x,y)\in\{(2, \dfrac72), (-\dfrac12,\dfrac54)\}$ Giải thích các bước giải: Ta có: $\dfrac{2x+1}{5}=\dfrac{4y-5}{9}$ $\to 2x+1=\dfrac{20y-25}{9}$ $\to 2x=\dfrac{20y-25}{9}-1$ $\to 2x=\dfrac{20y-34}{9}$ $\to x=\dfrac{10y-17}{9}$ Lại có: $\dfrac{2x+1}{5}=\dfrac{2x+4y-4}{7x}$ $\to \dfrac{2\cdot \dfrac{10y-17}{9}+1}{5}=\dfrac{2\cdot \dfrac{10y-17}{9}+4y-4}{7\cdot \dfrac{10y-17}{9}}$ $\to \dfrac{ \dfrac{20y-34}{9}+1}{5}=\dfrac{ \dfrac{20y-34}{9}+4y-4}{\dfrac{70y-119}{9}}$ $\to \dfrac{ \dfrac{20y-34+9}{9}}{5}=\dfrac{ \dfrac{20y-34+36y-36}{9}}{\dfrac{70y-119}{9}}$ $\to \dfrac{ \dfrac{20y-25}{9}}{5}=\dfrac{ \dfrac{56y-70}{9}}{\dfrac{70y-119}{9}}$ $\to \dfrac{20y-25}{45}=\dfrac{ 56y-70}{70y-119}$ $\to \dfrac{4y-5}{9}=\dfrac{8y-10}{10y-17}$ $\to \dfrac{4y-5}{9}=\dfrac{2(4y-5)}{10y-17}$ $\to \dfrac{4y-5}{9}-\dfrac{2(4y-5)}{10y-17}=0$ $\to (4y-5)(\dfrac19-\dfrac{2}{10y-17})=0$ $\to 4y-5=0\to 4y=5\to y=\dfrac54\to x=\dfrac{10\cdot \dfrac54-17}{9}=-\dfrac12$ Hoặc $\dfrac19-\dfrac{2}{10y-17}=0$ $\to \dfrac19=\dfrac2{10y-17}$ $\to 10y-17=18$ $\to 10y=35$ $\to y=\dfrac72\to x=\dfrac{10\cdot \dfrac72-17}{9}=2$ Bình luận
Đáp án: $(x,y)\in\{(2, \dfrac72), (-\dfrac12,\dfrac54)\}$
Giải thích các bước giải:
Ta có:
$\dfrac{2x+1}{5}=\dfrac{4y-5}{9}$
$\to 2x+1=\dfrac{20y-25}{9}$
$\to 2x=\dfrac{20y-25}{9}-1$
$\to 2x=\dfrac{20y-34}{9}$
$\to x=\dfrac{10y-17}{9}$
Lại có:
$\dfrac{2x+1}{5}=\dfrac{2x+4y-4}{7x}$
$\to \dfrac{2\cdot \dfrac{10y-17}{9}+1}{5}=\dfrac{2\cdot \dfrac{10y-17}{9}+4y-4}{7\cdot \dfrac{10y-17}{9}}$
$\to \dfrac{ \dfrac{20y-34}{9}+1}{5}=\dfrac{ \dfrac{20y-34}{9}+4y-4}{\dfrac{70y-119}{9}}$
$\to \dfrac{ \dfrac{20y-34+9}{9}}{5}=\dfrac{ \dfrac{20y-34+36y-36}{9}}{\dfrac{70y-119}{9}}$
$\to \dfrac{ \dfrac{20y-25}{9}}{5}=\dfrac{ \dfrac{56y-70}{9}}{\dfrac{70y-119}{9}}$
$\to \dfrac{20y-25}{45}=\dfrac{ 56y-70}{70y-119}$
$\to \dfrac{4y-5}{9}=\dfrac{8y-10}{10y-17}$
$\to \dfrac{4y-5}{9}=\dfrac{2(4y-5)}{10y-17}$
$\to \dfrac{4y-5}{9}-\dfrac{2(4y-5)}{10y-17}=0$
$\to (4y-5)(\dfrac19-\dfrac{2}{10y-17})=0$
$\to 4y-5=0\to 4y=5\to y=\dfrac54\to x=\dfrac{10\cdot \dfrac54-17}{9}=-\dfrac12$
Hoặc $\dfrac19-\dfrac{2}{10y-17}=0$
$\to \dfrac19=\dfrac2{10y-17}$
$\to 10y-17=18$
$\to 10y=35$
$\to y=\dfrac72\to x=\dfrac{10\cdot \dfrac72-17}{9}=2$