tim x,y nguyen >0 tm a) 5(x+y)+2=3xy b)2(x+y)=5xy c)3x+7=y(x-3) 03/11/2021 Bởi Natalia tim x,y nguyen >0 tm a) 5(x+y)+2=3xy b)2(x+y)=5xy c)3x+7=y(x-3)
a. `5(x+y)+2=3xy` `⇒5x-3xy+5y=-2` `⇒x(5-3y)+5y=-2` `⇒-3x(5-3y)-15y=6` `⇒-3x(5-3y)+(25-15y)=31` `⇒-3x(5-3y)+5(5-3y)=31` `⇒(5-3y)(5-3x)=31` `⇒(5-3y);(5-3x)∈Ư(31)={±1;±31}` `⇒(x;y)∈{(2;12);(4/3;-26/3);(12;2);(4/3;-26/3)}` Vì `x,y∈Z^+⇒(x;y)∈{(2;12);(12;2)}` b. `2(x+y)=5xy` `⇒2x-5xy+2y=0` `⇒x(2-5y)+2y=0` `⇒-5x(2-5y)+4-10y=4` `⇒(2-5y)(2-5x)=4` `⇒(2-5y);(2-5x)∈Ư(4)={±1;±2;±4}` Kết hợp với `x,y∈Z^+⇒(x;y)∈{(0;0)}` c. `3x+7=y(x-3)` `⇒(3x-9)-y(x-3)=-16` `⇒(x-3)(3-y)=-16` `⇒(x-3);(3-y)∈Ư(16)={±1;±2;±4;±8;±16}` Vì $\left \{ {{x>0} \atop {x∈Z}} \right.⇒\left \{ {{x-3>-3} \atop {x∈Z}} \right.$ $\left \{ {{y>0} \atop {y∈Z}} \right.⇒\left \{ {{3-y<3} \atop {y∈Z}} \right.$ `⇒(x-3);(3-y)∈{(1;-16);(2;-8);(4;-4);(8;-2);(16;-1)}` `⇒(x;y)∈{(4;19);(5;11);(7;7);(11;5);(19;4)}`. Bình luận
a. `5(x+y)+2=3xy`
`⇒5x-3xy+5y=-2`
`⇒x(5-3y)+5y=-2`
`⇒-3x(5-3y)-15y=6`
`⇒-3x(5-3y)+(25-15y)=31`
`⇒-3x(5-3y)+5(5-3y)=31`
`⇒(5-3y)(5-3x)=31`
`⇒(5-3y);(5-3x)∈Ư(31)={±1;±31}`
`⇒(x;y)∈{(2;12);(4/3;-26/3);(12;2);(4/3;-26/3)}`
Vì `x,y∈Z^+⇒(x;y)∈{(2;12);(12;2)}`
b. `2(x+y)=5xy`
`⇒2x-5xy+2y=0`
`⇒x(2-5y)+2y=0`
`⇒-5x(2-5y)+4-10y=4`
`⇒(2-5y)(2-5x)=4`
`⇒(2-5y);(2-5x)∈Ư(4)={±1;±2;±4}`
Kết hợp với `x,y∈Z^+⇒(x;y)∈{(0;0)}`
c. `3x+7=y(x-3)`
`⇒(3x-9)-y(x-3)=-16`
`⇒(x-3)(3-y)=-16`
`⇒(x-3);(3-y)∈Ư(16)={±1;±2;±4;±8;±16}`
Vì $\left \{ {{x>0} \atop {x∈Z}} \right.⇒\left \{ {{x-3>-3} \atop {x∈Z}} \right.$
$\left \{ {{y>0} \atop {y∈Z}} \right.⇒\left \{ {{3-y<3} \atop {y∈Z}} \right.$
`⇒(x-3);(3-y)∈{(1;-16);(2;-8);(4;-4);(8;-2);(16;-1)}`
`⇒(x;y)∈{(4;19);(5;11);(7;7);(11;5);(19;4)}`.