tìm x,y thuộc R: (x+y)^2+|y+1/4|>=0 |x-y|+(x+2/5)^4<=0 05/11/2021 Bởi Ximena tìm x,y thuộc R: (x+y)^2+|y+1/4|>=0 |x-y|+(x+2/5)^4<=0
a) `(x+y)^2+|y+1/4|\le 0` Do `(x+y)^2+ |y+1/4|\ge 0` với `∀x,y` `⇔(x+y)^2+|y+1/4|=0` $⇔\begin{cases}x+y=0\\y+\dfrac{1}{4}=0\end{cases}⇔\begin{cases}x=\dfrac{1}{4}\\y=\dfrac{-1}{4}\end{cases}$ Vậy `x=1/4; y=-1/4` b) `|x-y|+(x+2/5)^4\le 0` Mà `|x-y|+(x+2/5)^4\ge 0` với `∀x,y` `⇔|x-y|+(x+2/5)^4=0` $⇔\begin{cases}x-y=0\\x+\dfrac{2}{5}=0\end{cases}⇔x=y=\dfrac{-2}{5}$ Vậy `x=y=-2/5` Bình luận
Cách giải: $a,(x+y)^2+|y+\dfrac{1}{4}| \leq 0$ $\begin{cases}(x+y)^2 \geq 0\\|y+\dfrac{1}{4}| \geq 0\\\end{cases}$ $\to (x+y)^2+|y+\dfrac{1}{4}| \geq 0$ $\to (x+y)^2+|y+\dfrac{1}{4}|=0$ $\to \begin{cases}y=-\dfrac{1}{4}\\x=-y=\dfrac{1}{4}\\\end{cases}$ Vậy $\begin{cases}y=-\dfrac{1}{4}\\x=-y=\dfrac{1}{4}\\\end{cases}$ $b,|x-y|+(x+\dfrac{2}{5})^4 \leq 0$ $\begin{cases}|x-y| \geq 0\\(x+\dfrac{2}{5})^4 \geq 0\\\end{cases}$ $\to |x-y|+(x+\dfrac{2}{5})^4 \geq 0$ $\to |x-y|+(x+\dfrac{2}{5})^4=0$ $\to \begin{cases}x=-\dfrac{2}{5}\\x=y=-\dfrac{2}{5}\\\end{cases}$ Vậy $\begin{cases}x=-\dfrac{2}{5}\\y=-\dfrac{2}{5}\\\end{cases}$ Bình luận
a) `(x+y)^2+|y+1/4|\le 0`
Do `(x+y)^2+ |y+1/4|\ge 0` với `∀x,y`
`⇔(x+y)^2+|y+1/4|=0`
$⇔\begin{cases}x+y=0\\y+\dfrac{1}{4}=0\end{cases}⇔\begin{cases}x=\dfrac{1}{4}\\y=\dfrac{-1}{4}\end{cases}$
Vậy `x=1/4; y=-1/4`
b) `|x-y|+(x+2/5)^4\le 0`
Mà `|x-y|+(x+2/5)^4\ge 0` với `∀x,y`
`⇔|x-y|+(x+2/5)^4=0`
$⇔\begin{cases}x-y=0\\x+\dfrac{2}{5}=0\end{cases}⇔x=y=\dfrac{-2}{5}$
Vậy `x=y=-2/5`
Cách giải:
$a,(x+y)^2+|y+\dfrac{1}{4}| \leq 0$
$\begin{cases}(x+y)^2 \geq 0\\|y+\dfrac{1}{4}| \geq 0\\\end{cases}$
$\to (x+y)^2+|y+\dfrac{1}{4}| \geq 0$
$\to (x+y)^2+|y+\dfrac{1}{4}|=0$
$\to \begin{cases}y=-\dfrac{1}{4}\\x=-y=\dfrac{1}{4}\\\end{cases}$
Vậy $\begin{cases}y=-\dfrac{1}{4}\\x=-y=\dfrac{1}{4}\\\end{cases}$
$b,|x-y|+(x+\dfrac{2}{5})^4 \leq 0$
$\begin{cases}|x-y| \geq 0\\(x+\dfrac{2}{5})^4 \geq 0\\\end{cases}$
$\to |x-y|+(x+\dfrac{2}{5})^4 \geq 0$
$\to |x-y|+(x+\dfrac{2}{5})^4=0$
$\to \begin{cases}x=-\dfrac{2}{5}\\x=y=-\dfrac{2}{5}\\\end{cases}$
Vậy $\begin{cases}x=-\dfrac{2}{5}\\y=-\dfrac{2}{5}\\\end{cases}$