tìm x,y,z bt x+16/9=y-25/-16=z+49/25 và 4x ³-3=29 ; 2x=3y=4z và x + y + z =13 14/08/2021 Bởi Katherine tìm x,y,z bt x+16/9=y-25/-16=z+49/25 và 4x ³-3=29 ; 2x=3y=4z và x + y + z =13
Đáp án: a, \(\left( {x;y;z} \right) = \left( {2; – 7;1} \right)\) b, \(\left( {x;y;z} \right) = \left( {6;4;3} \right)\) Giải thích các bước giải: a, Ta có: \(\begin{array}{l}4{x^3} – 3 = 29\\ \Leftrightarrow 4{x^3} = 32\\ \Leftrightarrow {x^3} = 8\\ \Leftrightarrow x = 2\\\frac{{x + 16}}{9} = \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}}\\ \Leftrightarrow \frac{{2 + 16}}{9} = \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}}\\ \Leftrightarrow \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}} = 2\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{{y – 25}}{{ – 16}} = 2\\\frac{{z + 49}}{{25}} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y – 25 = – 32\\z + 49 = 50\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = – 7\\z = 1\end{array} \right. \Rightarrow \left( {x;y;z} \right) = \left( {2; – 7;1} \right)\end{array}\) b, \(\begin{array}{l}2x = 3y = 4z\\ \Leftrightarrow \frac{{2x}}{{12}} = \frac{{3y}}{{12}} = \frac{{4z}}{{12}}\left( {12 = BCNN\left( {2;3;4} \right)} \right)\\ \Rightarrow \frac{x}{6} = \frac{y}{4} = \frac{z}{3}\end{array}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\begin{array}{l}\frac{x}{6} = \frac{y}{4} = \frac{z}{3} = \frac{{x + y + z}}{{6 + 4 + 3}} = \frac{{13}}{{13}} = 1\\ \Rightarrow \left\{ \begin{array}{l}\frac{x}{6} = 1\\\frac{y}{4} = 1\\\frac{z}{3} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 6\\y = 4\\z = 3\end{array} \right. \Rightarrow \left( {x;y;z} \right) = \left( {6;4;3} \right)\end{array}\) Bình luận
Đáp án:
a, \(\left( {x;y;z} \right) = \left( {2; – 7;1} \right)\)
b, \(\left( {x;y;z} \right) = \left( {6;4;3} \right)\)
Giải thích các bước giải:
a,
Ta có:
\(\begin{array}{l}
4{x^3} – 3 = 29\\
\Leftrightarrow 4{x^3} = 32\\
\Leftrightarrow {x^3} = 8\\
\Leftrightarrow x = 2\\
\frac{{x + 16}}{9} = \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}}\\
\Leftrightarrow \frac{{2 + 16}}{9} = \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}}\\
\Leftrightarrow \frac{{y – 25}}{{ – 16}} = \frac{{z + 49}}{{25}} = 2\\
\Leftrightarrow \left\{ \begin{array}{l}
\frac{{y – 25}}{{ – 16}} = 2\\
\frac{{z + 49}}{{25}} = 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y – 25 = – 32\\
z + 49 = 50
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = – 7\\
z = 1
\end{array} \right. \Rightarrow \left( {x;y;z} \right) = \left( {2; – 7;1} \right)
\end{array}\)
b,
\(\begin{array}{l}
2x = 3y = 4z\\
\Leftrightarrow \frac{{2x}}{{12}} = \frac{{3y}}{{12}} = \frac{{4z}}{{12}}\left( {12 = BCNN\left( {2;3;4} \right)} \right)\\
\Rightarrow \frac{x}{6} = \frac{y}{4} = \frac{z}{3}
\end{array}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\begin{array}{l}
\frac{x}{6} = \frac{y}{4} = \frac{z}{3} = \frac{{x + y + z}}{{6 + 4 + 3}} = \frac{{13}}{{13}} = 1\\
\Rightarrow \left\{ \begin{array}{l}
\frac{x}{6} = 1\\
\frac{y}{4} = 1\\
\frac{z}{3} = 1
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x = 6\\
y = 4\\
z = 3
\end{array} \right. \Rightarrow \left( {x;y;z} \right) = \left( {6;4;3} \right)
\end{array}\)