Tìm x ∈ Z để các phân số sau ∈ Z a) $\frac{x-7}{x+4}$ b) $\frac{6x+4}{3x+1}$ c) $\frac{x+5}{x+3}$ d) $\frac{2x+7}{x-3}$ e) $\frac{6x-3}{3x+1}$

Tìm x ∈ Z để các phân số sau ∈ Z
a) $\frac{x-7}{x+4}$
b) $\frac{6x+4}{3x+1}$
c) $\frac{x+5}{x+3}$
d) $\frac{2x+7}{x-3}$
e) $\frac{6x-3}{3x+1}$

0 bình luận về “Tìm x ∈ Z để các phân số sau ∈ Z a) $\frac{x-7}{x+4}$ b) $\frac{6x+4}{3x+1}$ c) $\frac{x+5}{x+3}$ d) $\frac{2x+7}{x-3}$ e) $\frac{6x-3}{3x+1}$”

  1. $\text{Đáp án + Giải thích các bước giải:}$

    `a//(x-7)/(x+4)∈Z`

    `=>x-7\vdots x+4`

    `=>(x+4)-11\vdots x+4`

    `=>11\vdots x+4`

    `=>x+4∈Ư(11)={±1;±11}`

    `=>x∈{-3;7;-5;-15}`

    `b//(6x+4)/(3x+1)∈Z`

    `=>6x+4\vdots 3x+1`

    `=>2(3x+1)+2\vdots 3x+1`

    `=>2\vdots 3x+1`

    `=>3x+1∈Ư(2)={±1;±2}`

    `=>3x∈{0;1;-2;-3}`

    `=>x∈{0;-1}` $\text{. Do x ∈ Z}$

    `c//(x+5)/(x+3)∈Z`

    `=>x+5\vdots x+3`

    `=>(x+3)+2\vdots x+3`

    `=>2\vdots x+3`

    `=>x+3∈Ư(2)={±1;±2}`

    `=>x∈{-4;-5;-2;-1}`

    `d//(2x+7)/(x-3)∈Z`

    `=>2x+7\vdots x-3`

    `=>2(x-3)+13\vdots x-3`

    `=>13\vdots x-3`

    `=>x-3∈Ư(13)={±1;±13}`

    `=>x∈{4;16;2;-10}`

    `e//(6x-3)/(3x+1)∈Z`

    `=>6x-3\vdots 3x+1`

    `=>2(3x+1)-5\vdots 3x+1`

    `=>5\vdots 3x+1`

    `=>3x+1∈Ư(5)={±1;±5}`

    `=>3x∈{0;4;-2;-6}`

    `=>x∈{0;-2}` $\text{. Do x ∈ Z }$

     

    Bình luận
  2. Đáp án:

    `a)x\in \{-15;-5;-3;7\}`

    `b)x\in\{-1;0\}`

    `c)x\in \{-5;-4;-2;-1\}`

    `d)x\in \{-10;2;4;16\}`

    `e)x\in \{-2;0\}`

    Giải thích các bước giải:

    `a)` Để `\frac{x-7}{x+4}\in Z`

    `=>x-7\vdots x+4`

    `=>(x+4)-11\vdots x+4`

    Do `x+4\vdots x+4`

    `=>11\vdots x+4`

    `=>x+4\in Ư(11)=\{-11;-1;1;11\}`

    `=>x\in \{-15;-5;-3;7\}`

    `b)` Để `\frac{6x+4}{3x+1}\in Z`

    `=>6x+4\vdots 3x+1`

    `=>6x+2+2\vdots 3x+1`

    `=>2(3x+1)+2\vdots 3x+1`

     Do `2(3x+1)\vdots 3x+1`

    `=>2\vdots 3x+1`

    `=>3x+1\in Ư(2)=\{-2;-1;1;2\}`

    `=>3x\in \{-3;-2;0;1\}`

    `=>x\in \{-1;0\}`

    `c)` Để `\frac{x+5}{x+3}\in Z`

    `=>x+5\vdots x+3`

    `=>(x+3)+2\vdots x+3`

    Do `x+3\vdots x+3`

    `=>2\vdots x+3`

    `=>x+3\in Ư(2)=\{-2;-1;1;2\}`

    `=>x\in \{-5;-4;-2;-1\}`

    `d)` Để `\frac{2x+7}{x-3}\in Z`

    `=>2x+7\vdots x-3`

    `=>2x-6+13\vdots x-3`

    `=>2(x-3)+13\vdots x-3`

     Do `2(x-3)\vdots x-3`

    `=>13\vdots x-3`

    `=>x-3\in Ư(13)=\{-13;-1;1;13\}`

    `=>x\in \{-10;2;4;16\}`

    `e)` Để `\frac{6x-3}{3x+1}\in Z`

    `=>6x-3\vdots 3x+1`

    `=>6x+2-5\vdots 3x+1`

    `=>2(3x+1)-5\vdots 3x+1`

    Do `2(3x+1)\vdots 3x+1`

    `=>5\vdots 3x+1`

    `=>3x+1\in Ư(5)=\{-5;-1;1;5\}`

    `=>3x\in \{-6;-2;0;4\}`

    `=>x\in \{-2;0\}`

     

    Bình luận

Viết một bình luận