timf maxx -X^2 – 2y^2 + 2xy – 2x + 6y + 5 30/10/2021 Bởi Serenity timf maxx -X^2 – 2y^2 + 2xy – 2x + 6y + 5
$-x^2-2y^2+2xy-2x+6y+5$ =$-(x^2+2y^2-2xy+2x-6y-5)$ =$-[x^2-2x(y-1)+y^2-2y+1+y^2-4x+4-10]$ =$-[(x-y+1)^2+(y-2)^2-10]$ Ta có: $(x-y+1)^2≥0$ $(y-2)^2≥0$ ⇒$(x-y+1)^2+(y-2)^2≥0$ ⇒$(x-y+1)^2+(y-2)^2-10≥-10$ ⇒$-[(x-y+1)^2+(y-2)^2-10]≤10$ Dấu = xảy ra⇔$x-y+1=0;y-2=0$⇔$x=1;y=2$ Vậy $Max=10$ tại $x=1;y=2$ Bình luận
Ta có $-x^2+2xy-2y^2-2x+6y+5\\=-x^2+2x\left(y-1\right)-2y^2+6y+5$ $=-x^2+2x\left(y-1\right)-y^2+2y-1-y^2+4y-4+10$ $=-\left[x^2-2x\left(y-1\right)+\left(y^2-2y+1\right)\right]-\left(y^2-4y+4\right)+10$ $=-\left[x^2-2x\left(y-1\right)+\left(y-1\right)^2\right]-\left(y-2\right)^2+10\\=-\left(x-y+1\right)^2-\left(y-2\right)^2+10$ Ta thấy $-\left(x-y+1\right)^2\le 0\\-\left(y-2\right)^2\le 0\\10\ge 10>0$ $\Rightarrow -\left(x-y+1\right)^2-\left(y-2\right)^2+10\le 10$ Dấu bằng xảy ra $\Leftrightarrow x=1;y=2$ Vậy GTLN=10 tại x=1;y=2 Bình luận
$-x^2-2y^2+2xy-2x+6y+5$
=$-(x^2+2y^2-2xy+2x-6y-5)$
=$-[x^2-2x(y-1)+y^2-2y+1+y^2-4x+4-10]$
=$-[(x-y+1)^2+(y-2)^2-10]$
Ta có:
$(x-y+1)^2≥0$
$(y-2)^2≥0$
⇒$(x-y+1)^2+(y-2)^2≥0$
⇒$(x-y+1)^2+(y-2)^2-10≥-10$
⇒$-[(x-y+1)^2+(y-2)^2-10]≤10$
Dấu = xảy ra⇔$x-y+1=0;y-2=0$⇔$x=1;y=2$
Vậy $Max=10$ tại $x=1;y=2$
Ta có
$-x^2+2xy-2y^2-2x+6y+5\\
=-x^2+2x\left(y-1\right)-2y^2+6y+5$
$=-x^2+2x\left(y-1\right)-y^2+2y-1-y^2+4y-4+10$
$=-\left[x^2-2x\left(y-1\right)+\left(y^2-2y+1\right)\right]-\left(y^2-4y+4\right)+10$
$=-\left[x^2-2x\left(y-1\right)+\left(y-1\right)^2\right]-\left(y-2\right)^2+10\\
=-\left(x-y+1\right)^2-\left(y-2\right)^2+10$
Ta thấy
$-\left(x-y+1\right)^2\le 0\\
-\left(y-2\right)^2\le 0\\
10\ge 10>0$
$\Rightarrow -\left(x-y+1\right)^2-\left(y-2\right)^2+10\le 10$
Dấu bằng xảy ra $\Leftrightarrow x=1;y=2$
Vậy GTLN=10 tại x=1;y=2