Tính: 1/1+2+3 + 1/1+2+3+4 + 1/1+2+3+4+5 +……+ 1/1+2+3+……+2016

Tính:
1/1+2+3 + 1/1+2+3+4 + 1/1+2+3+4+5 +……+ 1/1+2+3+……+2016

0 bình luận về “Tính: 1/1+2+3 + 1/1+2+3+4 + 1/1+2+3+4+5 +……+ 1/1+2+3+……+2016”

  1. Đáp án: $2\cdot \left(\dfrac{1}{3}-\dfrac1{2017}\right)$

    Giải thích các bước giải:

    Ta có: $1+2+3+…+n=\dfrac{n\left(n+1\right)}{2}$

    $\to \dfrac{1}{1+2+3+…+n}=\dfrac{2}{n\left(n+1\right)}=2\cdot\dfrac{1}{n\left(n+1\right)}=2\cdot\dfrac{n+1-n}{n\left(n+1\right)}$

    $\to \dfrac{1}{1+2+3+…+n}=2\cdot\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)$

    Mà $A=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+\dfrac{1}{1+2+3+4+5}+…+\dfrac{1}{1+2+3+…+2016}$

    $\to A=2\cdot \left(\dfrac{1}{3}-\dfrac14\right)+2\cdot \left(\dfrac{1}{4}-\dfrac15\right)+2\cdot \left(\dfrac{1}{5}-\dfrac16\right)+…+2\cdot \left(\dfrac{1}{2016}-\dfrac1{2017}\right)$

    $\to A=2\cdot \left(\dfrac{1}{3}-\dfrac14+\dfrac{1}{4}-\dfrac15+\dfrac{1}{5}-\dfrac16+…+\dfrac{1}{2016}-\dfrac1{2017}\right)$

    $\to A=2\cdot \left(\dfrac{1}{3}-\dfrac1{2017}\right)$

    Bình luận

Viết một bình luận