Tính: 1) √(52-16√3) +√(〖(4√3-7)〗^2 ) 2) 1/(2+√3)-2/(3+√3)+√2/√6 3) √(14-6√5) – √(29-12√5)

Tính:
1) √(52-16√3) +√(〖(4√3-7)〗^2 )
2) 1/(2+√3)-2/(3+√3)+√2/√6
3) √(14-6√5) – √(29-12√5)

0 bình luận về “Tính: 1) √(52-16√3) +√(〖(4√3-7)〗^2 ) 2) 1/(2+√3)-2/(3+√3)+√2/√6 3) √(14-6√5) – √(29-12√5)”

  1. a. $\sqrt{52 – 16\sqrt{3}} + \sqrt{(4\sqrt{3} – 7)^2} =$
    $= \sqrt{(4\sqrt{3})^2 – 2.4\sqrt{3}.2 + 2^2} + |4\sqrt{3} – 7| =$
    $= \sqrt{(4\sqrt{3} – 2)^2} + 7 – 4\sqrt{3}$
    $= 4\sqrt{3} – 2 + 7 – 4\sqrt{3} = 5$ 

    b. $\dfrac{1}{2 + \sqrt{3}} – \dfrac{2}{3 + \sqrt{3}} + \dfrac{\sqrt{2}}{\sqrt{6}}$ 

    $= \dfrac{2 – \sqrt{3}}{(2 + \sqrt{3})(2 – \sqrt{3})} – \dfrac{2(3 – \sqrt{3})}{(3 + \sqrt{3})(3 – \sqrt{3})} + \dfrac{\sqrt{3}}{3}$
    $= \dfrac{2 – \sqrt{3}}{1} – \dfrac{6 – 2\sqrt{3}}{9 – 3} + \dfrac{1}{3}\sqrt{3}$
    $= 2 – \sqrt{3} – 1 + \dfrac{1}{3}\sqrt{3} + \dfrac{1}{3}\sqrt{3}$ $= 1 – \dfrac{1}{3}.\sqrt{3}$
    c. $\sqrt{14 – 6\sqrt{5}} – \sqrt{29 – 12\sqrt{5}} =$
    $= \sqrt{(3 – \sqrt{5})^2} – \sqrt{(2\sqrt{5} – 3)^2}$
        $= |3 – \sqrt{5}| – |2\sqrt{5} – 3|$
        $= 3 – \sqrt{5} – 2\sqrt{5} + 3 = 6 – \sqrt{5}$

    Bình luận

Viết một bình luận